bioRxiv preprint doi: https://doi.org/10.1101/2020.07.29.227421; this version posted July 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1	Title: Genomic insights into the host specific adaptation of the <i>Pneumocystis</i> genus and
2	emergence of the human pathogen Pneumocystis jirovecii
3	
4	Short title: Pneumocystis fungi adaptation to mammals
5	
6	Authors: Ousmane H. Cissé ^{1*†} , Liang Ma ^{1*†} , John P. Dekker ^{2,3} , Pavel P. Khil ^{2,3} , Jung-Ho
7	Youn ³ , Jason M. Brenchley ⁴ , Robert Blair ⁵ , Bapi Pahar ⁵ , Magali Chabé ⁶ , Koen K.A. Van
8	Rompay ⁷ , Rebekah Keesler ⁷ , Antti Sukura ⁸ , Vanessa Hirsch ⁹ , Geetha Kutty ¹ , Yueqin Liu
9	¹ , Peng Li ¹⁰ , Jie Chen ¹⁰ , Jun Song ¹¹ , Christiane Weissenbacher-Lang ¹² , Jie Xu ¹¹ , Nathan
10	S. Upham ¹³ , Jason E. Stajich ¹⁴ , Christina A. Cuomo ¹⁵ , Melanie T. Cushion ¹⁶ and Joseph
11	A. Kovacs ¹ *

12

Affiliations: ¹Critical Care Medicine Department, NIH Clinical Center, National 13 Institutes of Health, Bethesda, Maryland, USA.² Bacterial Pathogenesis and 14 15 Antimicrobial Resistance Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.³ Department of Laboratory 16 17 Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA. ⁴ Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, 18 National Institutes of Health, Bethesda, Maryland, USA.⁵ Tulane National Primate 19 Research Center, Tulane University, New Orleans, Louisiana, USA.⁶Univ. Lille, CNRS, 20 21 Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France. ⁷ California National Primate Research Center, 22 University of California, Davis, California, USA.⁸ Department of Veterinary Pathology, 23

- 1 -

24	Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland. ⁹ Laboratory
25	of Molecular Microbiology, National Institute of Allergy and Infectious Disease,
26	National Institutes of Health, Bethesda, Maryland, USA. ¹⁰ Department of Respiratory
27	and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical
28	University, Chongqing, China. ¹¹ Center for Advanced Models for Translational Sciences
29	and Therapeutics, University of Michigan Medical Center, University of Michigan
30	Medical School, Ann Arbor, MI, United States. ¹² Institute of Pathology and Forensic
31	Veterinary Medicine, Department of Pathobiology, University of Veterinary Medicine
32	Vienna, Vienna, Austria. ¹³ Arizona State University, School of Life Sciences, Tempe,
33	Arizona, USA. ¹⁴ Department of Microbiology and Plant Pathology and Institute for
34	Integrative Genome Biology, University of California, Riverside, Riverside-California,
35	Riverside, USA. ¹⁵ Broad Institute of Harvard and Massachusetts Institute of Technology,
36	Cambridge, Massachusetts, USA. ¹⁶ Department of Internal Medicine, College of
37	Medicine, University of Cincinnati, Cincinnati, OH, USA.
38	^{\dagger} These authors contributed equally to this work. [*] Correspondence and requests for
39	materials should be addressed to O.H.C (ousmane.cisse@nih.gov) or L.M
40	(mal3@nih.gov) or J.A.K (ikovacs@nih.gov).
40	(<u>mai3@nin.gov</u>) or J.A.K (<u>JKovacs@nin.gov</u>).

- 41
- 42
- 43
- 44

45 Abstract: *Pneumocystis jirovecii*, the fungal agent of human *Pneumocystis* pneumonia, is 46 closely related to macaque Pneumocystis. Little is known about other Pneumocystis 47 species in distantly related mammals, none of which are capable of establishing infection 48 in humans. The molecular basis of host specificity in *Pneumocystis* remains unknown as 49 experiments are limited due to an inability to culture any species in vitro. To explore 50 *Pneumocystis* evolutionary adaptations, we have sequenced the genomes of species 51 infecting macaques, rabbits, dogs and rats and compared them to available genomes of 52 species infecting humans, mice and rats. Complete whole genome sequence data enables 53 analysis and robust phylogeny, identification of important genetic features of the host 54 adaptation, and estimation of speciation timing relative to the rise of their mammalian 55 hosts. Our data reveals novel insights into the evolution of *P. jirovecii*, the sole member 56 of the genus able to infect humans.

57

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.29.227421; this version posted July 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

58

59 MAIN TEXT

60 Introduction

61 The evolutionary history of *Pneumocystis jirovecii*, a fungus that causes life-threatening
62 pneumonia in immunosuppressed patients such as those with HIV infection, has been

63 poorly defined. *P. jirovecii* is derived from a much broader group of host-specific

64 parasites that infect all mammals studied to date. Until recently, P. carinii and P. murina

65 (which infect rats and mice, respectively) were the only other species in this genus for

66 which biological specimens suitable for whole genome sequencing were readily

67 available. Inter-species inoculation studies have found that a given *Pneumocystis* species

68 can only infect a unique mammalian species (1, 2). Further, rats are the only mammals

69 known to be coinfected by at least two distinct *Pneumocystis* species (*P. carinii* and *P.*

70 wakefieldiae) (3). Within the Pneumocystis genus, P. jirovecii is the only species able to

71 infect and reproduce in humans, although the molecular mechanisms of its host

72 adaptation remain elusive.

73 Previous efforts to reconstruct the evolutionary history of *Pneumocystis* have 74 estimated the origins of the genus at a minimum of 100 million years ago (mya) (4). 75 Using a partial transcriptome of *P. macacae*, the *Pneumocystis* species that infects 76 macaques, we recently estimated that *P. jirovecii* diverged from the common ancestor of 77 *P. macacae* around ~ 62 mya (5), which substantially precedes the human-macaque split 78 of ~20 mya ago (6). Population bottlenecks in P. jirovecii and P. carinii at 400,000 and 79 16,000 years ago, respectively (5), are also not concordant with population expansions in 80 modern humans ($\sim 200,000 \text{ y}$ ago (7)) and rats ($\sim 10,000 \text{ y}$ ago (8)), which suggests a

- 4 -

81	decoupled coevolution between Pneumocystis and their hosts. This was the first evidence
82	that Pneumocystis may not be strictly co-evolving with their mammalian hosts as
83	suggested by ribosomal RNA-based maximum phylogenies (9). A molecular clock has
84	not been tested in any of these phylogenies. A strict co-evolution hypothesis was further
85	challenged by evidence showing relaxation of the host specificity in Pneumocystis
86	infecting rodents (10, 11). However, the accuracy of speciation times is limited without
87	the complete genomes of additional species including that of P. macacae, the closest
88	living sister species to P. jirovecii identified to date.
89	The absence of long-term in vitro culture methods or animal models for most
90	Pneumocystis species has precluded obtaining sufficient DNA for full genome
91	sequencing and has hindered investigation of the Pneumocystis genus. So far, only the
92	genomes of human P. jirovecii (12, 13), rat P. carinii (13, 14) and mouse P. murina, (13)
93	are available. These data have provided important insights into the evolution of this
94	genus, including a substantial genome reduction (12, 13), the presence of intron-rich
95	genes possibly contributing to transcriptome complexity, and a significant expansion of a
96	highly polymorphic major surface glycoprotein (msg) gene superfamily (13), some of
97	which are important for immune evasion. However, the lack of whole genome sequences
98	for many species of this genus (particularly the closely related P. macacae) has severely
99	constrained the understanding of the implications of these genome features in
100	Pneumocystis evolution and adaptation to hosts.
101	To further explore the evolutionary history of the Pneumocystis genus, and
102	explore P. jirovecii genetic factors that support its adaptation to humans, we sequenced 2
103	to 6 specimens of four additional species: those that infect macaques (P. carinii forma

-5-

104	specialis macacae hereafter referred to as P. macacae), rabbits (P. oryctolagi), dogs (P.
105	carinii f. sp. canis hereafter referred to as P. canis) and rats (P. wakefieldiae). We
106	assembled a single representative, nearly full-length genome for three of the species
107	except in <i>P. canis</i> , in which we recovered three distinct genome assemblies that appear to
108	represent two separate species. We reconstructed a robust phylogeny of Pneumocystis
109	species, estimated their diversification time, and used comparative genomics to identify
110	unique and shared genomic features. Given that wild mammals may be commonly
111	exposed to different <i>Pneumocystis</i> species in nature, there is a possibility of historical
112	gene flow among <i>Pneumocystis</i> species that we have evaluated.
113	
114	Results and Discussion
115	Direct sequencing of <i>Pneumocystis</i> -host mixed samples
116	We sequenced the genomes of <i>Pneumocystis</i> species from infected macaques, rabbits,
117	dogs and rats (see Methods and Supplementary Methods). Specimens originated from
118	immunosuppressed animals as a consequence of simian immunodeficiency virus
119	infection in macaques, corticosteroid treatment (rabbits and rats), or possible congenital
120	immunodeficiencies (dogs). For each species, we sequenced samples from 2-6 animals
121	(Supplementary Tables 1 and 2). These data were used to assemble one high quality
122	consensus, nearly full-length genome assembly for each species except P. canis for which
123	we recovered two nearly full-length assemblies and an additional partial assembly from
124	separate samples (denoted as A, Ck1 and Ck2). Post assembly mapping revealed a non-
125	negligible amount of genetic variability among samples, for example the average genome
126	wide single nucleotide polymorphism (SNP) diversity among six P. macacae isolates is \sim

127	12%. The genome of <i>P. macacae</i> was sequenced using Oxford Nanopore long reads and
128	Illumina short read sequences, whereas the other Pneumocystis were sequenced only with
129	Illumina (Supplementary Tables 2 and 3). The new Pneumocystis genome assemblies
130	range from 7.3 Mb in <i>P. wakefieldiae</i> to 8.2 Mb in <i>P. macacae</i> . The <i>P. macacae</i> and <i>P.</i>
131	wakefieldiae genome assemblies consist of 16 and 17 scaffolds, respectively, both of
132	which are highly contiguous and approach the chromosomal level based on similarities
133	with published karyotypes (3, 15) and/or the presence of Pneumocystis telomere repeats
134	(16) at the scaffold ends (Supplementary Table 3). The genome assemblies of P .
135	oryctolagi and P. canis (assemblies A, Ck1 and Ck2) are less contiguous with 38, 33, 78
136	and 315 scaffolds, respectively. All these assemblies except for the partial assembly of P .
137	can s Ck2 have very similar total sizes $(7.3 - 8.2 \text{ Mb})$ comparable to previously
138	sequenced genomes of P. jirovecii, P. carinii and P. murina, all of which are at or near
139	chromosomal-level with a size of $7.4 - 8.3$ Mb (Supplementary Table 3). The genome
140	assemblies are all AT-rich (~71%) and ~3% encodes DNA transposons and
141	retrotransposons (Supplementary Table 3). We also assembled complete mitochondrial
142	genomes from all species in this study, which are similar in size $(21.2 - 24.5 \text{ kilobases})$ to
143	published rodent <i>Pneumocystis</i> mitogenomes $(24.6 - 26.1 \text{ kb})$ (17) but smaller than that
144	of P. jirovecii (~35 kb) (17) (Supplementary Table 3). P. macacae has a circular
145	mitogenome similar to P. jirovecii (17) whereas all other sequenced species have linear
146	mitogenomes.
147	

- - -
- 148
- 149

-7-

150 Genomic differences among *Pneumocystis* species

1 7 1			• .•	•	4 1 1 1
ורו	To assess the extent of	genome structure	variations amor	og species we	generated whole
101	10 abbebb the entent of	Senome structure	variations anton	is species, we	Sellerated whole

- 152 genome alignment of all representative genome assemblies. We found high levels of
- 153 interspecies rearrangements ranging from 10 breakpoints between *P. wakefieldiae* and *P.*
- 154 *murina* to 142 between *P. jirovecii* and *P. oryctolagi* (Fig. 1; Supplementary Table 4).
- 155 The vast majority of chromosomal rearrangements were inversions, which, for example
- accounted for 23 out of 29 breakpoints between *P. jirovecii* and *P. macacae*
- 157 (Supplementary Table 4). Analysis of aligned raw Nanopore and/or Illumina reads back
- to the assemblies show no evidence of incorrect contig joins around rearrangement
- 159 breakpoints. There are clearly less rearrangements among rodent *Pneumocystis* species
- 160 (*P. wakefieldiae*, *P. carinii* and *P. murina*) than among all other species (Fig. 1;
- 161 Supplementary Table 4), which is likely due to their younger evolutionary ages and
- 162 closer taxonomic relationships of their host species (Figs. 2a and 2c). These
- 163 rearrangements could have caused incompatibilities between these species, thus
- 164 preventing gene flow, for species that infect the same host.
- 165 Comparison of pairwise whole genome alignment identities between species
- 166 indicates a substantial genetic divergence: 14% dissimilarity in aligned regions between
- 167 *P. jirovecii* and *P. macacae*; 21% between *P. jirovecii* and *P. oryctolagi*; 22% between *P.*
- 168 *jirovecii* and *P. canis* Ck1; 15% between *P. wakefieldiae* and *P. carinii*; and 12%
- 169 between *P. wakefieldiae* and *P. murina* (Supplementary Table 5).
- 170
- 171
- 172

173 Speciation history of the *Pneumocystis* genus

174 These new complete genome data enabled us to examine the relationships between 175 different *Pneumocystis* species and to estimate the timing of speciation events that led to 176 the extant species. We inferred a strongly supported phylogeny of *Pneumocystis* species 177 rooted with outgroups from distantly related fungal subphyla. Our phylogenomic analysis 178 of 106 single-copy orthologs inferred from all assemblies including the fragmented Ck2 179 strongly supports monophyly of *Pneumocystis* species (100% Maximum likelihood 180 bootstrap values; Fig. 2a), Bayesian posterior probabilities (>0.95; Supplementary Figure 181 1), and highly significant support from the Shimodaira-Hasegawa test (18) (p < 0.001; 182 see Methods). An identical phylogeny was recovered using mitochondrial genome data 183 from 33 specimens representing 7 *Pneumocystis* (Supplementary Figure 2). However, we 184 identified unexpected placements of P. wakefieldiae, P. oryctolagi and P. canis. First, P. 185 wakefieldiae appears as a sister species of P. murina instead of P. carinii (which also 186 infects rats) (Fig. 2b). This observation is supported by the higher similarity in genome 187 size (Supplementary Table 3), sequence divergence (Supplementary Table 4), genome 188 structure (Fig. 1; Supplementary Table 5) and higher frequencies of supporting genes 189 (0.64 in 1718 nuclear gene trees examined; Methods) between P. wakefieldiae and P. 190 murina than between P. wakefieldiae and P. carinii. These relationships contradict the 191 previous phylogenetic placement of *P. wakefieldiae* as an outgroup of the *P. carinii/P.* 192 murina clade (9) or a sister species of P. carinii (19) based on analysis of mitochondrial 193 large and small subunit rRNA genes (mtLSU and mtSSU). The new phylogeny also 194 opposes the prevailing hypothesis for dynamics of host specificity and coevolution within 195 the *Pneumocystis* genus, that is, *P. wakefieldiae* shares with *P. carinii* the same host

-9-

species (*Rattus norvegicus*) and thus is expected to be more related to *P. carinii* than to *P. murina*.

198	Similarly, P. oryctolagi would be expected to be phylogenetically closer to rodent
199	Pneumocystis than to primate Pneumocystis, consistent with the closer phylogenetic
200	relationships of rabbits and rodents to each other than to primates (20) (Figs. 2a and 2b).
201	In contrast, P. oryctolagi and P. canis are more closely related to primate Pneumocystis
202	(P. jirovecii and P. macacae) than rodent Pneumocystis (Fig. 2a; Supplementary Figures
203	1 and 2; 100% of tree level support in 1,718 nuclear genes). The phylogenetic
204	discrepancy between P. oryctolagi and its host (rabbit) suggests that host switching may
205	have occurred in their distant history.
206	From whole-genome Bayesian phylogenetic estimates (see Methods), the
207	common ancestor of all extant species of the genus emerged around 140 mya (confidence
208	intervals: 180–101 mya; Fig. 2c; Supplementary Figure 1), with a separation of
209	Pneumocystis and Schizosaccharomyces genera around 512 mya (CI: 822-203 mya)
210	which is consistent with independent estimates of the origin of Taphrinomycota crown
211	group at 530 mya (21). The Pneumocystis genus thereafter divided into two main clades,
212	P1 consisting of <i>P. jirovecii</i> , <i>P. macacae</i> , <i>P. oryctolagi</i> and <i>P. canis</i> , and P2 consisting of
213	species infecting rodents (P. carinii, P. wakefieldiae and P. murina) (Fig. 2b).
214	Subsequent to the divergence of P1/P2, the clade P1 diversified through a series of
215	speciation events leading either to new primate or carnivore species whereas P2 remained
216	localized in rodents. We also found that the divergence time of <i>Pneumocystis</i> in the clade
217	P1 predates that of their hosts, that is, the crown of rodent-rabbit-primate Pneumocystis is
218	clearly more ancient than the corresponding superorder of mammals (Euarchontoglires)

219	(Fig. 2c). The pattern in clade P2 is different as the divergence time estimates overlap
220	with those of their hosts (Fig. 2c). On the basis of coalescent estimates, P. jirovecii began
221	to split from <i>P. macacae</i> at ~62 mya (CI: 69-55 mya) which extended through the
222	Cretaceous-Paleogene mass extinction event at 66 mya, but substantially predates the
223	crown Catarrhini (human-macaque ancestor) of ~20 mya (CI: 24-17 mya; Fig. 2c;
224	Supplementary Figure 1).
225	
226	High levels of population differentiation identified from <i>Pneumocystis</i> genomes
227	support reproductive isolation
228	To understand the genomic divergence landscape of <i>Pneumocystis</i> populations, we
229	performed genome-wide differentiation tests (F_{ST} , relative population divergence) and
230	nucleotide diversity (π) (Methods). These analyses used 32 genomic datasets, including
231	26 publicly available datasets in GenBank for P. jirovecii, P. carinii and P. murina and 6
232	datasets generated in this study for other four Pneumocystis species (Supplementary Note
233	1; Supplementary Table 2). Of note <i>Pneumocystis</i> organisms from macaque, rat and
234	rabbit samples are from infected laboratory or domesticated animals (Supplementary
235	Table 5), and thus do not represent true random representation of natural (e.g. wild)
236	populations. We used a trained version LAST (22) to account for interspecies divergence
237	during read mapping and ANGSD (23) to derive genotype likelihoods instead of
238	genotypes. Since ANGSD's F_{ST} requires outgroups, we analyzed interspecies divergence
239	between P. jirovecii, P. macacae and P. oryctolagi populations using a sliding window
240	approach of 5-kb and <i>P. carinii</i> as an outgroup species (<i>n</i> samples = 59). <i>P. murina</i>
241	genomic divergence relative to P. carinii and P. wakefieldiae populations was estimated

- 11 -

242	similarly	using P.	<i>jirovecii</i> as ar	outgroup	species	(n = 47).	We found	high levels of
	_	υ.	/	0 1	1	· /		0

- 243 population differentiation among *Pneumocystis* specimens; 71.9% of the *P. jirovecii*
- genome had a Fixation index $(F_{ST}) > 0.8$ compared to the closest species, *P. macacae*,
- while 90.2% of the genome had a $F_{ST} > 0.8$ compared to the extant species *P. oryctolagi*
- 246 (Supplementary Figure 3). Similarly, 86.3% and 93.7% of the *P. murina* genome had a
- 247 $F_{ST} > 0.8$ compared to *P. carinii* and *P. wakefieldiae*, respectively (Supplementary Note
- 248 1).
- 249

250 Analyzing historical hybridization in *Pneumocystis* genus

251 Topology-based maximum likelihood analysis of 1,718 gene trees using PhyloNet (33)

found no evidence of statistically significant signals for gene flow among species of clade

- 253 P1 (*P. jirovecii*, *P. macacae*, *P. oryctolagi* and *P. canis*) (see Methods; Supplementary
- Figure 4), which indicates that these lineages were reproductively isolated throughout
- their evolutionary history, consistent with their isoenzyme diversity (34). In contrast, we
- found strong evidence of ancient hybridization in clade P2, possibly between *P. carinii*
- and *P. wakefieldiae* (Methods; Supplementary Figure 4), which may then have
- contributed to the formation of the *P. murina* lineage. We hypothesize that *P. murina*
- 259 might have originated as a hybrid between ancestors of *P. carinii* and *P. wakefieldiae* in
- rats, and subsequently shifted to mice, possibly owing to the geographic proximity of
- ancestral rodent populations (for example in Southern Asia (35)), which is consistent
- with the fact that ecological fitting is a major determinant of host switch (36). The

263 presumed physiological, cellular and/or immunological similarities among closely related

264 rodent species might also have helped the same *Pneumocystis* species colonizing multiple

265	closely-related rodent hosts (10, 36). The putative host shift might have been required
266	because of negative selection against P. murina specifically in rats, possibly stemming
267	from competition of low-fitness hybrids with parental species as is frequently observed in
268	fungal pathogens (37) . It is also interesting to note that earlier studies have suggested
269	competition between <i>P. carinii</i> and <i>P. wakefieldiae</i> in rat colonies (38), and further, that
270	P. wakefieldiae can no longer be detected in commercial vendors (Cushion et al.
271	unpublished observation), while P. carinii can consistently be identified in laboratory
272	rats. However, both P. carinii and P. wakefieldiae can be found, alone or together, in
273	different species of Rattus in Southeast Asia (10).
274	
275	Gene families and metabolic pathways linked to host specificity
276	Gene annotations of P. macacae and P. wakefieldiae genomes was performed using
277	RNA-Seq paired-end reads to guide ab initio gene predictions (Methods). P. oryctolagi
278	and P. canis genomes were annotated using ab initio and homology-based predictions.
279	The predicted protein-coding gene numbers are similar across Pneumocystis genomes and
280	range from 3,211 in P. wakefieldiae to 3,476 in P. canis strain Ck1 (Supplementary Table
281	3). Nearly all predicted protein coding genes in <i>P. macacae</i> (96% of 3,471) and <i>P.</i>
282	wakefieldiae (99% of 3,221) genomes have RNA-Seq support. Gene models present a
283	complex architecture with 5.7 to 6.3 exons per gene. High representation of core
284	eukaryotic genes in P. macacae, P. oryctolagi, P. canis and P. wakefieldiae provides
285	evidence that these genomes are nearly complete and comparable in completeness to P.
286	jirovecii, P. murina and P. carinii genomes: 86.2 to 93.4% of conserved genes are
287	detectable in all annotated genome assemblies (Supplementary Table 3).

288	Examination of orthologous genes reveals that ~3,100 orthologous clusters had
289	representative genes from all nine analyzed genome assemblies from seven Pneumocystis
290	species (Supplementary Table 3). We found a small number of unique genes in each
291	Pneumocystis species ranging from 25 in P. wakefieldiae to 204 in P. oryctolagi
292	(Supplementary Table 3). Unique genes in most species encode for phylogenetically
293	unrelated proteins with unknown function. A striking exception is observed in <i>P</i> .
294	macacae in which nearly all unique proteins are part of a novel undescribed large protein
295	family ($n = 190$). The members of this new family are enriched in arginine and glycine
296	amino acid residues (denoted RG proteins) (Supplementary Figure 5a) and have no
297	similarities with transposable elements. While RG motifs are often found in eukaryotic
298	RNA-binding proteins (24), P. macacae RGs do not possess an RNA-binding domain
299	(Pfam domains PF00076, PF08675, PF05670, PF00035), suggesting a different role. In
300	addition, P. macacae RGs lack functional annotation except for two proteins that encode
301	a Dolichol-phosphate mannosyltransferase domain (PF08285) and a leucine zipper
302	domain (PF10259), respectively. Of the 190 RGs, 134 have RNA-Seq based gene
303	expression support, including five among the top highly expressed genes (Supplementary
304	Figure 5b). Nearly half of RGs are located at subtelomeric regions and often found in
305	close proximity to msg genes (Supplementary Table 6). RG proteins can be grouped in
306	three main clusters (based on OrthoFinder clustering; Methods), have a reticulate
307	phylogeny (Supplementary Figure 5c) and a mosaic gene structure (Supplementary
308	Figure 5d) which suggest frequent gene conversion events. These results suggest that RG
309	proteins may play important roles in P. macacae specific biology. Further experiments
310	are ongoing to elucidate the functions of these proteins in <i>P. macacae</i> .

- 14 -

311	To investigate the gene loss patterns in newly sequenced genomes, we compared
312	Pneumocystis gene catalogs to those of related Taphrinomycotina fungi. We found that
313	all sequenced Pneumocystis species have lost ~40% of gene families present in other
314	Taphrinomycotina (Supplementary Figure 6), and that the metabolic pathways are also
315	very similar among Pneumocystis species with a few minor (possibly stochastic)
316	differences (Supplementary Note 2). This strongly suggests that Pneumocystis ancestry
317	experienced massive gene losses that occurred before the genus diversification.
318	To investigate changes in gene content that might explain interspecies differences
319	among the seven Pneumocystis species, we searched for expansions or contractions in
320	functionally classified gene sets. We identified Pfam domains with significantly uneven
321	distribution among genomes (Wilcoxon signed-rank test $p < 0.05$). Domains associated
322	with Msg proteins are enriched in P. jirovecii and, to a lesser extent in P. macacae
323	compared to other species (Fig. 3a). Domains associated with peptidases (M16) are
324	enriched in P. carinii, P. murina and P. wakefieldiae. S8 peptidase family (kexin) is
325	expanded in <i>P. carinii</i> as described previously (13) with 13 copies whereas all other
326	species have one or three copies (Fig. 3a; Supplementary Figure 7). Although kexin is
327	localized in other fungi to the Golgi apparatus, and in Pneumocystis is believed to be
328	involved in the processing of Msg proteins, the expanded copies are predicted to be GPI-
329	anchored proteins, appear to localize to the cell surface; their function is unknown (25).
330	P. carinii and P. wakefieldiae have 13 and 3 copies whereas all other Pneumocystis
331	species have only one (Supplementary Figure 7). We found that P. carinii kexin genes
332	evolved under strong positive selection ($p = 0.008$) whereas <i>P. wakefieldiae</i> kexin genes
333	did not ($p = 0.159$).

- 15 -

334	Proteins with CFEM (common in fungal extracellular membrane) domains are
335	important for the acquisition of vital compounds in fungal pathogens (26). Pneumocystis
336	have an unusual high presence of CFEM domains compared to other Taphrinomycotina;
337	each species possesses five proteins containing 2 to 6 domains per protein
338	(Supplementary Figures 8a-c), with no significant differences among different species (p-
339	value = 0.057 ; PF05730.10). Phylogenetic analysis of CFEM domains indicates that
340	Pneumocystis species have experienced significantly higher intragenic duplications rates
341	relative to other fungi (Supplementary Figure 8b). These results suggest that multiple
342	CFEM domains were likely already present in the last common ancestor of Pneumocystis
343	and were vertically transmitted.
344	To investigate changes in enzyme gene content that might account for inter-
345	species differences among Pneumocystis species, we searched for enzymes that show
346	clear differences among species, which are represented by Enzyme Commission numbers
347	(ECs) (Fig. 3b). We found 34 ECs, which include 14 that are highly conserved in <i>P</i> .
348	jirovecii but have a patchy distribution in other members of clade P1 (P. macacae, P.
349	canis and P. oryctolagi) and are lost in clade P2 (P. carinii, P. murina and P.
350	wakefieldiae). Most of these 14 ECs are assigned to the biosynthesis of antibiotics or
351	secondary metabolites and vitamin B6 metabolism according to KEGG pathways. The
352	latter pathway seems only functional in P2 clade (Supplementary Note 2).
353	
354	
355	

356

- 16 -

357 Intron evolution

- 358 We analyzed 1,211 one-to-one gene orthologs shared by all sequenced *Pneumocystis* and
- 359 other Taphrinomycotina fungi (Supplementary Figure 9a). A total of 9,080 homologous
- 360 sites within 1,211 alignments were identified (Supplementary Figure 9b). While intron
- densities are similar among *Pneumocystis* species (ranging from 4,842 in *P. macacae* to
- 362 5,289 in *P. murina*), they are markedly more elevated compared to related
- 363 Taphrinomycotina, including *Neolecta irregularis* (*n* = 4,202 introns),
- 364 *Schizosaccharomyces pombe* (n = 862) and *Taphrina deformans* (n = 639)
- 365 (Supplementary Fig. 11b). Predictions of ancestral intron densities show that the
- 366 *Pneumocystis* common ancestor had at least 5,341 introns, of which 37% were novel i.e.
- 367 not found in other Taphrinomycotina (Supplementary Figure 9c). This is in contrast to
- 368 other fungi; ~26% of *Neolecta* introns were independently acquired whereas *S. pombe*
- 369 and *T. deformans* genomes have experienced significant intron losses, which is consistent
- 370 with previous studies (31, 32). These results suggest the emergence of *Pneumocystis*
- 371 genus was preceded by a significant amount of intron gain.
- 372

373 Positive selection footprints in *P. jirovecii* genes

- 374 We tested the hypothesis that *P. jirovecii* has adapted specifically to humans after its
- 375 separation with *P. macacae*, and that there will be footprints of directional selection in
- the genome that point to the molecular mechanisms of this adaptation. To infer *P*.
- 377 *jirovecii*-specific adaptive changes, we compared the *P. jirovecii* one-to-one orthologs to
- 378 those of *P. macacae* and *P. oryctolagi* using the branch-site likelihood ratio test (39).
- 379 Positive selection was identified as an accelerated non-synonymous substitution rate. The

380	test identified 244 genes (out of 2,466) with a signature of positive selection in the human
381	pathogen <i>P. jirovecii</i> alone (Bonferroni corrected <i>p</i> -value < 0.05; Supplementary Table
382	7). Gene Ontology enrichment analysis of these genes with accelerate rates identified
383	significant enrichment for the biological process "cellular response to stress" (adjusted
384	using Benjamini-Hochberg <i>p</i> -value =1.9 x 10^{-6}) and the molecular function "potassium
385	channel regulator activity" ($p = 2.8 \times 10^{-10}$). Among the 244 genes, 197 are conserved in
386	all <i>Pneumocystis</i> genomes available whereas 47 are absent in clade P2 only (<i>P. carinii</i> , <i>P.</i>
387	murina and P. wakefieldiae; Fig. 2b). While the latter set of genes encode proteins of
388	unknown function, analysis of Pfam domains shows a significant enrichment in the
389	biological process "nucleoside phosphate biosynthetic" process ($p = 9.9 \times 10^{-5}$) and the
390	molecular function "carbon-nitrogen lyase activity" ($p = 2.8 \times 10^{-10}$). Further
391	investigations will be required to determine the precise functions of these genes.
202	

392

393 Subtelomeric gene families

394 Until recently, the only in-depth data on the subtelomeric gene families in *Pneumocystis*

have come from the *P. jirovecii*, *P. carinii* and *P. murina* (13, 40). These genes, including

396 *msg* and kexin, are believed to be important for antigenic variation, and are well

397 represented in the assemblies of *P. macacae*, *P. oryctolagi*, *P. canis* and *P. wakefieldiae*.

398 We provide a comprehensive analysis of their composition and evolution that

399 complements our recent publication (41).

400 *P. macacae* subtelomeres encode numerous arrays of Msg and RG proteins

401 (Supplementary Table 7). Phylogenetic analysis of adjacent genes revealed only a few

402 instances of recent paralogs, which suggests that most of the duplications and subsequent

- 18 -

403	positional gene arrangements are ancient. Three P. macacae subtelomeric regions have a
404	nearly perfect synteny in <i>P. jirovecii</i> with the only difference being the absence of RG
405	proteins in P. jirovecii (Supplementary Table 7). P. oryctolagi subtelomeres tend to be
406	enriched in orphan genes that are not members of the Msg superfamily, and are of
407	unknown function. P. canis subtelomeres are enriched in Msg-C family (see Msg section
408	below). P. wakefieldiae subtelomeres are enriched in msg genes, though their types are
409	distinct from those of P. carinii and P. murina.
410	

411 Evolution of *msg* genes

Up to 6% of the *Pneumocystis* genomes are comprised of copies of the *msg* superfamily,
which are believed to be crucial mediators of pathogenesis through antigenic variation
and interaction with the host cells. The superfamily is classified into five families A, B,
C, D and E based on protein domain architecture, phylogeny and expression mode (*13*, *40*, *41*). The A family is the largest of the five, has been subdivided into three subfamilies
(A1, A2 and A3) and is generally thought to contribute to antigenic variation. Their

418 protein products contain cysteine-rich domain classified as N1 and M1 to M5.

419 To investigate the origin of *msg* genes, we used previously developed Hidden

420 Markov Models (13) to search for corresponding gene models in the assemblies of *P*.

421 *macacae*, *P. oryctolagi*, *P. canis* and *P. wakefieldiae* and combined these data with

422 previously published *msg* sequences annotated in *P. jirovecii*, *P. carinii* and *P. murina*

423 genomes (13, 41). Of note, in this study only a subset of *msg* genes were assembled for *P*.

424 *oryctolagi*, *P. canis* and *P. wakefieldiae* due to difficulties in assembling highly similar

425 short reads from Illumina sequencing exclusively while a potentially complete set of *msg*

426 genes were assembled for *P. macacae* using Illumina and Nanopore reads

427	(Supplementary Table 3). The number of full-length msg genes available ranges from 9 in
428	P. oryctolagi to 161 in P. jirovecii. Sequence-based clustering and phylogenetic analyses
429	of all <i>msg</i> genes ($n = 482$) revealed that: (i) there is no evidence of inter-species transfer
430	among Pneumocystis species (Figs. 4b to d; Supplementary Figure 10), (ii) msg genes
431	may have a polyphyletic origin, i.e. distinct families were present in most recent
432	ancestors of Pneumocystis (Supplementary Figure 10a); (iii) msg genes experienced
433	significant amount of recombination early in their history as estimated by phylogenetic
434	network analysis (Supplementary Figures 10b and c).
435	The evolution of <i>msg</i> genes between clades P1 and P2 is not uniform among
436	Pneumocystis species and instead has clear differences between them. While some gene
437	expansions are relatively recent (for example, msg families A, C and D) other expansions
438	(msg families E and B) occurred before the emergence of Pneumocystis genus itself
439	(Supplementary Figure 11). Subsets of msg genes show strong host specific sequence
440	diversification (Fig. 4a), such as the current A family have emerged relatively recently 43
441	mya ago (CI: 58-28 mya) compared to the emergence of the genus at 140 mya ago (see
442	Methods; Supplementary Figure 11). The A1 subfamily displays a substantial expansion
443	in all species (Fig. 4a) and is subject to significant intra-species recombination (Figs. 4b
444	to d), which suggest that Pneumocystis most recent ancestor may have develop a pre
445	Msg-A family, which then evolved through duplication and recombination after the
446	separation of species.
447	The A3 subfamily has expanded only in clade P1 (especially in P. jirovecii)

447 The A3 subfamily has expanded only in clade P1 (especially in *P. jirovecu*)
448 whereas A2 has expanded only in clade P2 (*P. carinii*, *P. murina* and to a lesser extent in
449 *P. wakefieldiae*) (Fig. 4a). Although all members of the A family might have a shared

- 20 -

450	deep ancestry, we found no evidence suggesting that the A1, A2, A3 subfamilies are
451	directly derived from one another (Supplementary Figure 10).
452	The msg B family underwent a net independent expansion in P. macacae $(n = 10)$
453	and <i>P. jirovecii</i> ($n = 12$), while being reduced to only one copy in <i>P. oryctolagi</i> and <i>P</i> .
454	canis, and being completely absent in P. wakefieldiae, P. carinii and P. murina (Fig. 4a).
455	Using Bayesian estimates, we estimated the origin of B family to be older than the
456	Pneumocystis genus itself (~211 versus 140 mya; Supplementary Figure 11). While a half
457	of the B family members are located in subtelomeric regions in <i>P. jirovecii</i> and <i>P</i> .
458	macacae, we found no evidence of recent inparalogs, which is consistent with their
459	ancient origin. B family members lack predicted GPI anchor or transmembrane domain
460	and have a shorter proline-rich motif compared to other msg families. Many of the msg B
461	family members have a predicted secretory signal (13/25), with more in <i>P. jirovecii</i> than
462	in <i>P. macacae</i> (7 vs. 3 copies). These data suggest that at least some members of the B
463	family may be secreted effectors.
464	The msg D family is expanded only in P. macacae and P. jirovecii. The D family
465	emerged at ~69 mya (CI: 109-40 mya) before the split of these two species
466	(Supplementary Figure 11), thus suggesting a role in adaptation to primates similar to the
467	A3 subfamily. In contrast, the E family, which is conserved in all species, is much more
468	ancient at ~311 mya ago (CI: 541-158 mya), again preceding the emergence of the genus
469	(Supplementary Figure 11).
470	P. jirovecii and P. macacae have a significantly larger number of msg-associated
471	cysteine-rich domains than other Pneumocystis species (Fig. 5a) and also a much greater

472 sequence diversity per domain than other *Pneumocystis* species (Fig. 5c). Domain

- 21 -

473	sequences cluster independently, with each cluster containing sequences from all
474	Pneumocystis species (Fig. 5b). Domains M1 and M3 are more closely related to each
475	other than other domains, which suggests a relatively recent duplication. These results
476	suggest that the all domains are likely to appear in the Pneumocystis ancestor and
477	underwent a series of lineage specific expansions. The paucity of domains in P.
478	oryctolagi, P. canis and P. wakefieldiae might reflect an interaction with host cells
479	different than other species. Alternatively, these differences could represent incomplete
480	sets of Msgs in the former species.
481	

482 Conclusions

483 In the current study, we have produced high-quality genome assemblies and used them to 484 investigate the speciation and host specific adaptation of multiple members of the 485 Pneumocystis genus. We have established a robust phylogeny, presented genomic 486 differences among species, identified a possible introgression among rodent-hosted 487 *Pneumocystis* species, and discovered two phylogenetically distinct *Pneumocystis* 488 lineages in dogs. Our analysis suggests that successful infection of humans by *P. jirovecii* 489 has a deep evolutionary root accompanied by important genomic modifications. 490 Surprisingly, analysis of core genomic regions of nuclear genomes did not identify clear 491 differences that are suggestive of mechanisms for host-specific adaptation; instead it is 492 the highly polymorphic multicopy gene families in subtelomeric regions that appear to 493 account for this adaptation.

Based on our analysis, we propose the following series of events for the
emergence and adaptation of *P. jirovecii* as a major human opportunistic pathogen (Fig.

- 22 -

496 6). First, there was a major shift of a pre-*Pneumocystis* lineage (possibly a soil- or plant-497 adapted organism) to mammals, which led to a significant genome reduction but with a 498 significant proliferation of introns and expansions of cysteine-rich domain-containing 499 proteins involved in immune escape and nutrient scavenging from hosts. *Pneumocystis* 500 genomes encode multiple gene families that have experienced a rapid accumulation of 501 mutations favoring fungal replication in mammals. Each *Pneumocystis* species has 502 employed different strategies to adapt to their host including lineage-specific expansions 503 of shared gene families such as msg A1, A3 and D in P. jirovecii or gain and expansion 504 of RG proteins in *P. macacae*. In addition, some shared gene families also have acquired 505 different properties (e.g., transmembrane domain and secreted signals) potentially 506 contributing to host specificity. Our data point to the possibility that chromosomal 507 rearrangements may play a role in the inhibition of gene flow between P. *jirovecii* and P. 508 macacae leading to their speciation. The absence of a reliable culture method and the 509 inability to genetically manipulate *Pneumocystis* prevents directly testing our model. 510 Moreover, for the genes that we have now implicated in the process of host adaptation, 511 only a few have been functionally characterized. Future studies on the role of these genes 512 will be important to elucidate the molecular basis of in host specific adaptation by 513 *Pneumocystis* pathogens. 514 By untangling the co-evolution of *Pneumocystis* species with their mammalian 515 hosts, we show that this evolution is more complex than portrayed by a strict co-

516 evolutionary framework. The potential relaxation of strict host specificity in small

517 mammals colonized by *Pneumocystis* could be explained as well by the fact that, in the

518 coevolution theory, parasites infecting rodents (small-bodied with short lifespans, high

519	reproduction rates, and high population densities) have lower host specificity than those
520	adapted to long-lived large mammals with more stable population densities (42). Our
521	analyses documented rare instances of pathogen speciation while sharing the same host
522	(rats and dogs), which is equivalent to a speciation in sympatry (without geographical
523	isolation). This work predicts novel and critical aspects of the genetic basis of host
524	adaptation by <i>P. jirovecii</i> , the only fungal pathogen known to have adapted to living
525	exclusively in human lungs. Future studies further expanding the sampled Pneumocystis
526	genomes across the diversity of mammals, will be key to further understanding molecular
527	basis of host specificity. The evolutionary processes that gave rise to the obligate
528	biotrophic lifestyles of <i>Pneumocystis</i> within its host remain important future research
529	questions (43, 44). The next important steps will also include the study of the influence of
530	host biology on Pneumocystis adaptation, the genetic mechanisms underlying pathogen
531	host shifts, and the genetic incompatibility between coexisting pathogens (e.g. P. carinii
532	and <i>P. wakefieldiae</i> in rats).
533	
534	Material and Methods

535 Experimental Design and *Pneumocystis* sample sources

536 Animal and human subject experimentation guidelines of the National Institutes of

- 537 Health (NIH) were followed in the conduct of this study. Studies of human and
- 538 mouse *Pneumocystis* infection were approved by NIH Institutional Review Board (IRB)
- 539 protocols 99-I-0084 and CCM 19-05, respectively. The collection and processing of a
- 540 single *P. jirovecii* human bronchoalveolar lavage sample from China (Pj55) was
- 541 approved by the IRB of the First Affiliated Hospital of Chongqing Medical University,

542	China (protocol no. 20172901). Written informed consent was obtained from the patient
543	for the participation in this study. The authors confirmed that personal identity
544	information of the patient data was unidentifiable from this report. The National Institute
545	of Allergy and Infectious Diseases (NIAID) Division of Intramural Research Animal
546	Care and Use Program, as part of the NIH Intramural Research Program, approved all
547	experimental procedures pertaining to the macaques (protocol LVD 26). Nonhuman
548	primate study protocols were approved by the Institutional Animal Care and Use
549	Committee of the University of California, Davis (protocol no. 7092), the Tulane
550	National Primate Research Center (TNPRC) and the Institutional Animal Care and Use
551	Committee (IACUC) (protocol no. P0351R). Studies of
552	rabbit Pneumocystis infection were reviewed and approved by the Institutional Animal
553	Care and Use Committee of the University of Michigan (protocol no. RO00008218). For
554	rabbit samples obtained France, the conditions for care of laboratory animals stipulated in
555	European guidelines were followed (See: Council directives on the protection of animals
556	for experimental and other scientific purposes, and J. Off. Communautés Européennes,
557	86/609/EEC, 18 December 1986, L358). Samples from <i>Pneumocystis</i> infected dog were
558	collected as diagnostic samples and approved for only for research purpose. The owner's
559	consents for using samples and data were obtained on admission of the case and no
560	further ethics permission was required because it was a routine diagnostic case and did
561	not qualify as an animal experiment. Studies of rat Pneumocystis infection were approved
562	by the Veteran Affairs animal protocol (VA ACORP #17-12-05-01). Clinical information
563	and demographic data of the groups of individuals are presented in Supplementary Table
564	1.

- 25 -

565	Three P. jirovecii samples were obtained as bronchoalveolar lavage from patients
566	at the NIH Clinical Center in Bethesda, MD, USA and Chongqing Medical University in
567	Chongqing, China.

- 568 Six *P. macacae* samples were obtained as frozen lung tissues or formalin fixed
- 569 paraffin embedded (FFPE) tissue sections prepared from SIV-infected rhesus macaques
- 570 at the NIH Animal Center, Bethesda, Maryland (n = 2), the Tulane National Primate
- 571 Research Center, Covington, Louisiana (n = 3), and the UC Davis California National
- 572 Primate Research Center, Davis, California, USA (n = 1).
- 573 Four *P. oryctolagi* samples were obtained as frozen lung tissues from one rabbit
- 574 with severe combined immunodeficiency at the University of Michigan, Ann Arbor,
- 575 Michigan, USA, or as DNA from two corticosteroid treated rabbits and one rabbit with
- 576 spontaneous *Pneumocystis* infection at the Institut Pasteur de Lille and the Institut
- 577 National de la Recherche Agronomique de Tours Pathologie Aviaire et Parasitologie,
- 578 Tours, France.
- *P. canis* samples were obtained as DNA from one Cavalier King Charles Spaniel
 dog at the University of Helsinki, Finland and one Whippet mixed-breed at the University
 of Veterinary Medicine, Vienna, Austria.
- *P. murina* organisms were obtained from heavily-infected CD40L-KO mice
 following a short-term *in vitro* culture. Genomic data obtained from *P. murina* isolates
 were combined with previously sequenced public data (Supplementary Table 2) and used
 for population genomics analysis (section "Speciation history of the *Pneumocystis* genus"
 and Supplementary Note 1).

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.29.227421; this version posted July 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

- 587 One frozen cell pellet and 4 agarose gel blocks containing *P. wakefieldiae* and *P.*
- 588 *carinii* were obtained from immunosuppressed rats (one gel block per rat) housed at the
- 589 Cincinnati VA Medical Center, Veterinary Medicine Unit, Cincinnati, Ohio.
- 590

591 Genome sequencing, assembly and annotation

- 592 Genomic DNA in agarose gel blocks was extracted using the Zymoclean Gel DNA
- 593 Recovery Kit (Zymo Research). Genomic DNA in FFPE sections was extracted using the
- 594 AllPrep DNA/RNA FFPE Kit (Qiagen). Genomic DNA in frozen lung tissues from two
- 595 *P. macacae*-infected macaques and one *P. oryctolagi*-infected rabbit was extracted using
- 596 the *Pneumocystis* DNA enrichment protocol as described elsewhere (5, 13). Genomic
- 597 DNA in bronchoalveolar lavage samples from *P. jirovecii*-infected patients was extracted
- using the MasterPure Yeast DNA purification kit (Epicentre Biotechnologies, Madison,
- 599 WI, USA). Total RNAs for *P. macacae*, *P. wakefieldiae* and *P. murina* were isolated
- 600 using RNeasy Mini kit (Qiagen).
- For DNA samples with small quantity, including three *P. oryctolagi* samples
- 602 (RABF, RAB1 and RAB2B) and one *P. jirovecii* sample (RU817), we performed whole
- 603 genome amplification prior to Illumina sequencing. Five microliters of each DNA sample
- 604 were amplified in a 50-ul reaction using an Illustra GenomiPhi DNA V3 DNA
- amplification kit (GE Healthcare, United Kingdom).
- 606 Genomic DNA samples were quantified using Qubit dsDNA HS assay kit
- 607 (Invitrogen) and NanoDrop (ThermoFisher). RNA samples integrity and quality were
- 608 assessed using Bioanalyzer RNA 6000 picoassay (Agilent). The identities of
- 609 *Pneumocystis* organisms were verified by PCR and Sanger sequencing of mtLSU before

610	high throughput sequencing. For most of the DNA samples, at least one microgram of
611	each DNA or RNA (depleted of ribosomal RNA using Illumina Ribo-Zero rRNA
612	Removal Kit) sample was sequenced commercially using the Illumina HiSeq2500
613	platform with 150 or 250-base paired-end libraries (Novogene Inc, USA) or for one DNA
614	sample of <i>P. jirovecii</i> from a Chinese patient using a single-read SE50 library using the
615	MGISeq 2000 platform (MGI Tec, China). Raw reads statistics and NCBI SRA accession
616	numbers are presented in Supplementary Material (Data access section) and
617	Supplementary Table 2.
618	Adapters and low-quality reads were discarded using trimmomatic v0.36 (45)
619	with the parameters "-phred33 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15
620	MINLEN:36". Host DNA and other contaminating sequences were removed by mapping
621	against host genomes using Bowtie2 v2.4.1 (46). Filtered Illumina reads were assembled
622	de novo using Spades v3.11.1 (47). Details for host DNA sequences removal,
623	Pneumocystis reads recovery and de novo assembly protocols are presented in
624	Supplementary Material. Completeness of assemblies was estimated using BUSCO v9
625	(48), FGMP v1.0.1 (49) and CEGMA v2.5 (50).
626	Nanopore sequencing was performed on P. macacae DNA samples prepared from
627	a single heavily infected macaque (P2C) with ~68% Pneumocystis DNA based on prior
628	Illumina sequencing (Supplementary Table 2). High molecular weight genomic DNA
629	fragments were isolated using the BluePippin (Sage Science) with the high-pass filtering
630	protocol. A DNA library was prepared using the rapid Sequencing kit (SQK-RAD0004)
631	from Oxford Nanopore Technologies (Oxford, UK) and loaded in the MinION
632	sequencing device. Host reads were removed by mapping to the Rhesus macaque genome

(NCBI accession number GCF_000772875.2_Mmul_8.0.1) using Minimap2 v2.10 (51).
Unmapped reads were aligned to the draft version of <i>P. macacae</i> assembly built
previously using Illumina data (Supplementary Methods) with ngmlr v0.2.7 (52). A total
of 1,633,376 nanopore reads were obtained, of which ~5% were attributed to
Pneumocystis (27-fold coverage), which is much less than the 68% based on Illumina
data (Supplementary Table 2). This suggests that many P. macacae genomic DNA
fragments were too short to pass the size selection filter. Pneumocystis nanopore reads
were assembled using Canu v.1.8.0 (53), overlapped with the assembly using Racon
v.1.3.3 (54) and polished with Pilon v1.22 (55) using the Illumina reads aligned with
BWA MEM v0.7.17 (56).
Illumina RNA-Seq of the P. macacae sample P2C yielded 22 millions reads, of
which ~92% were attributed to <i>Pneumocystis</i> (Supplementary Table 2). Filtered reads
were mapped to the <i>P. macacae</i> assembly using hisat2 v2.2.0 (57), sorted with SAMtools
v1.10 (58) and filtered with PICARD v2.1.1 (http://broadinstitute.github.io/picard). De
novo transcriptome assembly of filtered reads was performed with Trinity (59).
Quantification of transcript abundance was performed using Kallisto v0.46.1 (60). P.
wakefieldiae (2A) and P. murina RNA-Seq data were processed similarly
(Supplementary Table 2).
DNA transposons, retrotransposons and low complexity repeats were identified
using RepeatMasker (61), RepBase (62) and TransposonPSI
(http://transposonpsi.sourceforge.net). Pneumocystis telomere motif "TTAGGG" (16)
was searched using "FindTelomere" (available at
https://github.com/JanaSperschneider/FindTelomeres). The genomes of P. carinii strain

0.50 CCIII (14) and strain SEO (12) were scartoided with Satsunia (05) using the F. car	656	Ccin (14)) and strain SE6 ((12) were	scaffolded with	Satsuma (63	3) using the P.	carinii
---	-----	-----------	--------------------	-----------	-----------------	-------------	-----------------	---------

- 657 strain B80 as reference genome (13). P. macacae, P. oryctolagi, P. canis Ck1, P. canis A,
- 658 *P. wakefieldiae*, and *P. carinii* (strains Ccin and SE6) genome assemblies were annotated
- using Funannotate v1.5.3 (DOI 10.5281/zenodo.1134477). The homology evidence
- 660 consists of fungal proteins from UniProt (64) and BUSCO v9 fungal proteins (48). For P.
- 661 *macacae* and *P. wakefieldiae*, RNA-Seq mapping files (BAM) and *de novo* transcriptome
- assemblies were used as hints for AUGUSTUS (65). Ab initio predictions were
- 663 performed using GeneMark-ES (66). All evidences were merged using EvidenceModeler
- 664 (67). Taphrina genomes (T. deformans, T. wiesneri, T. flavoruba and T. populina (32,
- 665 68)) and *P. canis* Ck2 were annotated using MAKER2 (69) because predicted gene
- models showed a better quality than those obtained from Funannotate. MAKER2
- 667 integrates *ab initio* prediction from SNAP (70), AUGUSTUS built-in *Pneumocystis* gene
- models (71) and GeneMark-ES as well as BLAST- based homology evidences from a
- 669 custom fungal proteins database. GPI prediction was performed using PredGPI (72), big-
- 670 PI (73) and KohGPI (74). Signal peptide leader sequences and transmembrane helices
- 671 were predicted using Signal-P version 5 (75) and TMpred (76), respectively. Protein
- domains were inferred using Pfam database version 3.1 (77) with PfamScan
- 673 (<u>https://bio.tools/pfamscan_api</u>). Domain enrichment analysis was performed using
- dcGOR version 1.0.6 (78). PRIAM (79) release JAN2018 was used to predict ECs using
- the following options: minimum probability > 0.5, profile coverage > 70%, check
- 676 catalytic TRUE and e-value $< 10^{-3}$. *Pneumocystis* mitochondrial genome assembly and
- annotations are described in Supplementary Material. Three dimensional (3D) protein

678 structure prediction of Msg proteins was performed using DESTINI (80) and visualized

- 679 with PyMol (www.pymol.org).
- 680

681 **Comparative genomics**

- 682 All genomes were pairwise aligned to the *Pneumocystis jirovecii* strain RU7 genome
- 683 NCBI accession GCF_001477535.1 (13) using LAST version 921 (22) with the MAM4
- 684 seeding scheme (81). One-to-one pairwise alignments were created using maf-swap
- utility of LAST package and merged into a single multi-species whole genome alignment
- using LAST's maf-join utility. Pairwise rearrangement distances in terms of minimum
- number of rearrangements were inferred using GRIMM (82) and Mauve (83).
- 688 Breakpoints of genomic rearrangements were refined with Cassis (84) and annotated
- using BEDtools (85) 'annotate' command. Average pairwise genome-wide nucleotide
- 690 divergences were computed with Minimap2 (51). Synteny visualization was carried out
- using Synima (86). Msg protein similarity networks were based on global pairwise
- 692 identity obtained from pairwise alignments of full length proteins using Needle (87) or
- 693 BLASTp (88) identity scores for individual protein domains. The networks presented in
- Figures 4 and 5 were generated using the Fruchterman Reingold algorithm as
- 695 implemented in Gephi 0.9.2 (89).
- 696 To investigate the evolution of introns in *Pneumocystis* species, we identified
- 697 unambiguous one-to-one orthologous clusters using reciprocal best Blast hit (e-value of
- 10^{-10} as cut off) in seven *Pneumocystis* species as well as in three other Taphrinomycotina
- 699 fungi : S. pombe, T. deformans and N. irregularis. Intron position coordinates were
- 700 extracted from annotated genomes using Replicer (90) and projected onto protein

701	multiple alignments using custom scripts. Homologous splice sites in annotated protein
702	sequence alignments were identified using MALIN (91). We required at least 11
703	unambiguous splicing sites and 5 minimal non-gapped positions. A potential splice was
704	considered unambiguous if the site has at least 5 nongaps positions in the aligned
705	sequences in both the left and right sides. MALIN uses a rates-across sites markov model
706	with branch specific gain and loss rates to infer evolution of introns. Gain and loss rates
707	were optimized through numerical optimizations. Fungi have a strong tendency to intron
708	loss with few exceptions (e.g. Cryptococcus) whereas gain of intron is relatively rare.
709	Thus, we penalized intron gain and set the variation rate to 4/3 for loss and gain levels.
710	Intron evolutionary history was inferred using a posterior probabilistic estimation with
711	100 bootstrap support values.
712	
712 713	Phylogenomics
712 713 714	Phylogenomics Orthologous gene families were inferred using OrthoFinder v.2.3.11 (92). In addition to
712713714715	Phylogenomics Orthologous gene families were inferred using OrthoFinder v.2.3.11 (92). In addition to Pneumocystis and Taphrina species, the predicted proteins for the following species were
 712 713 714 715 716 	Phylogenomics Orthologous gene families were inferred using OrthoFinder v.2.3.11 (92). In addition to <i>Pneumocystis</i> and <i>Taphrina</i> species, the predicted proteins for the following species were downloaded from NCBI: <i>Neolecta irregularis</i> (accession no. GCA_001929475.1), <i>S</i> .
 712 713 714 715 716 717 	Phylogenomics Orthologous gene families were inferred using OrthoFinder v.2.3.11 (92). In addition to <i>Pneumocystis</i> and <i>Taphrina</i> species, the predicted proteins for the following species were downloaded from NCBI: <i>Neolecta irregularis</i> (accession no. GCA_001929475.1), <i>S. pombe</i> (GCF_000002945.1), <i>S. cryophilus</i> (GCF_000004155.1), <i>S. octosporus</i>
 712 713 714 715 716 717 718 	Phylogenomics Orthologous gene families were inferred using OrthoFinder v.2.3.11 (92). In addition to <i>Pneumocystis</i> and <i>Taphrina</i> species, the predicted proteins for the following species were downloaded from NCBI: <i>Neolecta irregularis</i> (accession no. GCA_001929475.1), <i>S.</i> <i>pombe</i> (GCF_000002945.1), <i>S. cryophilus</i> (GCF_00004155.1), <i>S. octosporus</i> (GCF_000150505.1), <i>S. japonicus</i> (GCF_000149845.2), <i>Saitoella complicata</i>
 712 713 714 715 716 717 718 719 	Phylogenomics Orthologous gene families were inferred using OrthoFinder v.2.3.11 (92). In addition to <i>Pneumocystis</i> and <i>Taphrina</i> species, the predicted proteins for the following species were downloaded from NCBI: <i>Neolecta irregularis</i> (accession no. GCA_001929475.1), <i>S.</i> <i>pombe</i> (GCF_00002945.1), <i>S. cryophilus</i> (GCF_00004155.1), <i>S. octosporus</i> (GCF_000150505.1), <i>S. japonicus</i> (GCF_000149845.2), <i>Saitoella complicata</i> (GCF_001661265.1), <i>Neurospora crassa</i> (GCF_000182925.2), <i>Cryptococcus</i>
 712 713 714 715 716 717 718 719 720 	PhylogenomicsOrthologous gene families were inferred using OrthoFinder v.2.3.11 (92). In addition toPneumocystis and Taphrina species, the predicted proteins for the following species weredownloaded from NCBI: Neolecta irregularis (accession no. GCA_001929475.1), S.pombe (GCF_000002945.1), S. cryophilus (GCF_00004155.1), S. octosporus(GCF_000150505.1), S. japonicus (GCF_000149845.2), Saitoella complicata(GCF_001661265.1), Neurospora crassa (GCF_000182925.2), Cryptococcusneoformans (GCF_000149245.1), Rhizopus oryzae (GCA_000697725.1) and
 712 713 714 715 716 717 718 719 720 721 	PhylogenomicsOrthologous gene families were inferred using OrthoFinder v.2.3.11 (92). In addition toPneumocystis and Taphrina species, the predicted proteins for the following species weredownloaded from NCBI: Neolecta irregularis (accession no. GCA_001929475.1), S.pombe (GCF_000002945.1), S. cryophilus (GCF_00004155.1), S. octosporus(GCF_000150505.1), S. japonicus (GCF_000149845.2), Saitoella complicata(GCF_001661265.1), Neurospora crassa (GCF_000182925.2), Cryptococcusneoformans (GCF_000149245.1), Rhizopus oryzae (GCA_000697725.1) andBatrachochytrium dendrobatidis (GCF_000203795.1). Single-copy genes were extracted

723 458,948 distinct alignment patterns (i.e. unique columns in the alignment) with a gap

724	proportion of 12.2%. Maximum likelihood tree analysis was performed using RAxML v
725	8.2.5 (93) with 1,000 bootstraps as support values. The LG model (94) was selected as
726	the best amino acid model based on the likelihood PROTGAMMAAUTO in RAxML.
727	106 gene trees were estimated from each of the single copy genes. The Shimodaira-
728	Hasegawa test (18) was performed on the tree topology for each of the gene trees and the
729	concatenated alignment using IQ-Tree (95) with 1,000 RELL bootstrap replicates.
730	To infer the species phylogeny using mitochondrial genomes, protein coding
731	genes were extracted, aligned using Clustal Omega (96), and concatenated. The resulting
732	alignment was used to infer phylogeny using IQ-Tree v.1.6 (97) with TVM+F+I+G4 as
733	the Best-fit substitution model and 1,000 ultrafast bootstraps and SH-aLRT test. A total
734	of 33 mitogenomes from seven <i>Pneumocystis</i> species were used: <i>P. jirovecii</i> $[n = 18]$
735	including 3 sequences from this study and four from previous studies (5, 12, 17)], P.
736	<i>macacae</i> $(n = 4)$, four <i>P. oryctolagi</i> $(n = 4)$, <i>P. canis</i> $[n = 4, (17, 98)]$, <i>P. carinii</i> $[n = 2, 100]$
737	(17, 98)], <i>P. murina</i> [<i>n</i> = 1, (17)] and <i>P. wakefieldiae</i> (<i>n</i> = 1).
738	Phylogenetic reconciliations of species tree and gene trees were performed using
739	Notung (99). Ancestral reconstruction of gene family's history was performed using
740	Count (100). Phylogenetic network for Msg protein families was inferred using SplitTree
741	(101). The detection of putative mosaic genes was performed using TOPALi v2.5 (102).
742	
743	Phylodating
744	Single-copy orthogroup nucleotide sequences were aligned using MACS v0.9b1 (103).

- 745 Highly polymorphic *msg* sequences were excluded using BLASTn (88) with an e-value
- 746 of 10^{-5} as cutoff against 479 published *msg* sequences (13). We inferred the divergence

747	timing using two datasets: (1) 24 single-copy nuclear gene orthologs shared by all
748	Pneumocystis and S. pombe; and (2) 568 nuclear genes found in all Pneumocystis species.
749	BEAST inputs were prepared using BEAUTi v2.5.1 (104). Unlinked relaxed lognormal
750	molecular clock models (105, 106) and calibrated birth-death tree priors (107) were used
751	to estimate the divergence times and the credibility intervals. The substitution site model
752	HKY was applied (108). Three secondary calibration priors were used: (i) P. jirovecii/P.
753	macacae divergence with a median time of 65 mya as 95% highest posterior density
754	(HPD) (5)), (ii) the emergence of the <i>Pneumocystis</i> genus at a minimum age of 100 mya
755	(4), and (iii) the Schizosaccharomyces – Pneumocystis split at ~ 467 mya (109). For the
756	dataset 2, the 568 gene alignments were concatenated in a super alignment with 568
757	partitions, with each partition defined by one gene. Gene partitions were collapsed using
758	PartitionFinder v2.1.1 (110) with the "greedy" search to find optimal partitioning scheme.
759	The alignment was split in three partitions in BEAST. Three independent runs for each
760	dataset were performed separately for 60 million generations using random seeds. Run
761	convergence was assessed with Tracer v1.7.1 (minimum effective sampling size of 200
762	with a burn-in of 10%). Trees were summarized using TreeAnnotator v.2.5.1
763	(http://beast.bio.ed.ac.uk/treeannotator) and visualized using FigTree v.1.4.4
764	(http://tree.bio.ed.ac.uk/software/figtree) to obtain the means and 95% HPD. Host
765	divergences were obtained from the most recent mammal tree of life (6) , available at
766	http://vertlife.org/data/mammals. The dating of fungal gene families was performed
767	similarly.

768

769 **Population genomics**

- 34 -

770	Sequence data sources and primary statistics are presented in Supplementary Table 2.
771	Adapter sequences and low-quality headers of base sequences were removed using
772	Trimmomatic (45). Interspecies reads alignment was performed using LAST (22) with
773	the MAM4 seeding scheme (81). Alignments were processed by last-split utility to allow
774	inter species re-arrangements, sorted using SAMtools v1.10 (58). Duplicates were
775	removed using and PICARD v2.1.1. To compute the F_{ST} and nucleotide diversity
776	(Watterson, pairwise, FuLi, fayH, L), we calculated the unfolded site frequency spectra
777	for each population using the Analysis of Next Generation Sequencing Data (ANGSD)
778	(23). Site frequency spectra was estimated per base site allele frequencies using ANGSD
779	(23, 111). Hierarchical clustering was performed using ngsCovar (112). All data were
780	formatted to fit a sliding windows of 1-10 kb using BEDTools (113). For each window,
781	an average value of the statistics was calculated using custom scripts.
782	

783 Gene flow inference

784 To infer a phylogenetic network, we used 1,718 one-to-one orthologs from gene catalogs of seven *Pneumocystis* species using reciprocal best BLASTp hit with an e-value of 10^{-10} 785 786 as cut off. Sequences from each orthologous group were aligned using Muscle (114). 787 Alignments with evidence of intragenic recombination were filtered out using PhiPack 788 (115) with a p-value of 0.05 as cut off. For each aligned group a maximum likelihood (ML) tree was inferred using RAxML-ng (116) with GTR+G model and 100 bootstrap 789 790 replicates, and Bayesian tree was generated using BEAST2 (104). ML trees were filtered 791 using the following criteria: 0.9 as the maximum proportion of missing data, 100 as the 792 minimum number of parsimony-informative sites, 50 as the minimum bootstrap node-

-35 -

- support value and 0.05 as the minimum p-value for rejecting the null hypothesis of no
- recombination within the alignment. BEAST trees with an effective sampling size < 200
- 795 were removed. Filtered trees were summarized using Treannotator
- 796 (<u>https://www.beast2.org/treeannotator/</u>). Summary trees with an average posterior support
- inferior to 0.8 were discarded. Species network was inferred using PhyloNet option
- "InferNetwork_MPL" (33) with prior reticulation events ranging from 1 to 4.
- 799 Phylogenetic networks were visualized using Dendroscope 3 (117).
- 800 The highest probability network inferred a hybridization between *P. carinii* and *P.*
- 801 *wakefieldiae* leading to *P. murina* followed by a backcrossing between *P. murina* with *P.*
- 802 *wakefieldiae* (log probability = -12759.4). Analysis of tree topology frequencies revealed
- that 64% of the trees were consistent with the topology of (*P. carinii*, (*P. murina*, *P.*
- 804 *wakefieldiae*)), 28% with the topology of (*P. wakefieldiae*, (*P. carinii*, *P. murina*)) and
- 805 8% with the topology of (*P. murina*, (*P. carinii*, *P. wakefieldiae*)).
- 806

807 **Detection of positive selection**

- 808 To search for genes that have been subjected to positive selection in *P. jirovecii* alone
- 809 after the divergence from *P. macacae*, we used the branch-site test (39) as implemented
- 810 in PAML (118) which detects sites that have undergone positive selection in a specific
- 811 branch of the phylogenetic tree (foreground branch). A set of 2,466 orthologous groups
- 812 between *P. jirovecii*, *P. macacae* and *P. oryctolagi* was used for the test. d_N/d_S ratio
- 813 estimates per branch per gene were obtained using Codeml (PAML v4.4c) with a free
- 814 ratio model of evolution. This process identified 244 genes with a significant signal of
- 815 positive selection only in *P. jirovecii* ($d_N/d_S > 1$).

816

817 Statistical analysis, custom scripts and figures

- 818 All custom bioinformatic analyses were conducted using Perl v5.26.0
- 819 (http://www.perl.org/) or Python v.3.6 (<u>http://www.python.org</u>) scripts. Pipelines were
- 820 written using Snakemake v5.11.2 (119). Custom scripts and pipelines are available
- 821 <u>https://github.com/ocisse/pneumocystis_evolution</u>. Statistical analyses were conducted in
- 822 R version 3.3.2 (120). Phylogenetic trees with geological time scale were visualized
- using strap version 1.4 (121). Sequence motifs were visualized using WebLogo (122).
- 824 Multi-panel figures were assembled in Inkscape (https://inkscape.org). Icon credit in
- 825 Figure 6: Anthony Caravaggi under the license https://creativecommons.org/licenses/by-
- 826 nc-sa/3.0/(mouse), Sam Fraser-Smith (vectorized by T. Michael Keesey) (dog).
- 827 <u>https://creativecommons.org/licenses/by/3.0/</u>. Anthony Caravaggi
- 828 <u>https://creativecommons.org/licenses/by-nc-sa/3.0/</u> (rabbit).
- 829

830 Supplementary Materials

- 831 Supplementary Methods.
- B32 Data access.
- 833 Note S1. Population genomics analysis.
- Note S2. Metabolic pathways.
- Fig. S1. The maximum clade credibility tree of *Pneumocystis* species.
- Fig. S2. Maximum likelihood phylogeny constructed using a concatenated dataset of 15
- 837 protein coding genes from 33 *Pneumocystis* mitochondrial genomes.
- 838 Fig. S3. Genome-wide scans for footprints of natural selection in *Pneumocystis*.

- Fig. S4. Evidence of ancient gene flow in rodent *Pneumocystis* only.
- Fig. S5. Evolution of arginine-glycine (RG) rich proteins in *P. macacae*.
- Fig. S6. Heatmap showing gene family distribution in *Pneumocystis*.
- 842 Fig. S7. Expansion of kexin peptidase families in *Pneumocystis*.
- 843 Fig. S8. Evolutionary history of CFEM domains in *Pneumocystis*.
- Fig. S9. Evolutionary history of introns in *Pneumocystis* and Taphrinomycotina fungi.
- Fig. S10. RAxML phylogeny and phylogenic networks of Msg genes.
- Fig. S11. Phylodating of major surface glycoproteins in *Pneumocystis*.
- Table S1. Clinical information and demographic data of individual samples.
- Table S2. Statistics and a posteriori classification of reads used in this study.
- 849 Table S3. Statistics of different *Pneumocystis* genome assemblies.
- 850 Table S4. Genome rearrangements among different *Pneumocystis* species.
- Table S5. Pairwise nucleotide divergence (%) among *Pneumocystis* genomes.
- 852 Table S6. Subtelomeres in *P. macacae*
- 853 Table S7. *P. jirovecii* genome-wide signatures of selection.
- 854

855 Acknowledgments:

- 856 **Funding:** This work has been funded in whole or in part with federal funds from the
- 857 Intramural Research Program of the US National Institutes of Health (NIH) Clinical
- 858 Center and the National Institute of Allergy and Infectious Diseases (NIAID). This study
- used the Office of Cyber Infrastructure and Computational Biology (OCICB) High
- 860 Performance Computing (HPC) cluster at the National Institute of Allergy and Infectious
- 861 Diseases (NIAID), Bethesda, MD. This study also utilized the high-performance

862	computational capabilities of the Biowulf Linux cluster at the National Institutes of
863	Health, Bethesda, MD (http://biowulf.nih.gov). Author contributions: O.H.C, L.M and
864	J.A.K conceived the project and designed all the experiments. L.M, O.H.C, C.W.L, J.B,
865	J.X, J.S, R.B, B.P, K.V.R, R.K, A.S, M.C, V.H, J.C, L.P, M.T.C, G.K, Y.L, J.A.K
866	performed the laboratory work to obtain samples for sequencing. O.H.C, L.M, J.P.D,
867	P.P.K, J.L developed and implemented methods for sample processing, library
868	preparation and sequencing. O.H.C, L.M, J.E.S, C.A.C, N.S.U analyzed the data. O.H.C,
869	L.M and J.A.K drafted the manuscript, which was revised by all authors. J.E.S. and
870	C.A.C. are CIFAR Fellows in the program Fungal Kingdom: Threats and Opportunities.
871	Competing interests: The authors declare no competing financial interest. Data and
872	materials availability: All data needed to evaluate the conclusions in the paper are
873	present in the paper and/or the Supplementary Materials.
874 875 876	The content of this publication does not necessarily reflect the views or policies of the
877	Department of Health and Human Services, nor does mention of trade names,
878	commercial products, or organizations imply endorsement by the U.S. Government.
879	
880	
881	
882	
883	
884	
885	

Figures: 886

887	Fig. 1. Whole genome structure and synteny among <i>Pneumocystis</i> species. Species
888	names and their genome assembly identifiers are shown on the left. Horizontal
889	black lines on the right represent sequences of all scaffolds for each genome laid
890	end-to-end, with their nucleotide positions indicated at the bottom. Dark thick
891	squares represent short scaffolds. Syntenic regions between genomes are linked
892	with vertical gray lines. Reference genome assemblies of P. jirovecii, P. carinii
893	and <i>P. murina</i> are from a prior study (13).
894	
895	Fig. 2. Phylogeny and divergence times of Pneumocystis species. a, Maximum
896	likelihood phylogeny constructed using 106 single-copy genes based on 1,000
897	replicates from 24 annotated fungal genome assemblies including 9 from
898	Pneumocystis (highlighted with green background). Only one assembly is shown
899	for each species except there are three for <i>P. canis</i> (assemblies Ck1, Ck2 and A).
900	Bootstrap support (%) is presented on the branches. The fungal major
901	phylogenetic phyla and subphyla are represented by their initials: As
902	(Ascomycota), Ba (Basidiomycota), Pe (Pezizomycotina), Mu (Mucoromycota)
903	and Ta (Taphrinomycotina). b, Schematic representation of species phylogeny
904	and association between Pneumocystis species and their respective mammalian
905	hosts. The dashed arrows directed lines represent the specific parasite-host
906	relationships. c, Divergence times of <i>Pneumocystis</i> species and mammals.
907	Divergence time medians are represented as squares for hosts and as circles for
908	Pneumocystis, and the horizontal lines represent the 95% confidence intervals
بستشارات	-40- www.man

909	(CI), which are color-coded the same for each <i>Pneumocystis</i> and its host. Closed
910	elements represent nodes that are significantly different in term of divergence
911	times (non-overlapping confidence intervals) whereas open elements represent
912	nodes with overlapping confidence intervals. Catarrhini, taxonomic category
913	(parvorder) including Humans, great apes, gibbons and Old-World monkeys.
914	Euarchontoglires, superorder of mammals including rodents, lagomorphs,
915	treeshrews, colugos and primates. Glires, taxonomic clade consisting of rodents
916	and lagomorphs. Laurasiatheria, taxonomic clade of placental mammals that
917	includes shrews, whales, bats, and carnivorans. Mya, million years ago. K-Pg,
918	Cretaceous-Paleogene. The dotted vertical line representing the K-Pg mass
919	extinction event at 66 mya is included for context only.

920

921	Fig. 3. Distribution of protein families among Pneumocystis species. a, Heatmap of
922	Pfam protein domains with significant differences (Wilcoxon signed-rank test, $p < p$
923	0.05) are included if the domain appears at least once in the following
924	comparisons: primate Pneumocystis (P. jirovecii and P. macacae) versus other
925	Pneumocystis, clade P1 (P. jirovecii, P. macacae, P. oryctolagi, P. canis Ck1)
926	versus clade P2 (P. carinii, P. murina and P. wakefieldiae), primate Pneumocystis
927	versus clade P2. The number of proteins containing each domain is indicated
928	within each cell for each species. The heat map is colored according to a score, as
929	indicated by the key at the upper right corner. b, Heatmap of distribution of
930	enzymes (represented by Enzyme Commission numbers), with their presence and
931	absence indicated by black and grey colored cells, respectively.

932

933	Fig. 4. Clustering of <i>Pneumocystis</i> major surface glycoproteins (Msg). a, Graphical
934	representation of similarity between 482 Msg proteins from 7 Pneumocystis
935	species generated using the Fruchterman Reingold algorithm. A 3-D model of a
936	representative Msg protein A1 family (NCBI accession number T551_00910)
937	generated using DESTINI is presented in the upper left insert. Individual protein
938	sequences are shown as dots and color-coded by species as shown at the bottom.
939	The edge between two dots indicates a global pairwise identity equal or greater
940	than 45%. The letters represent Msg families (A to E) and subfamilies (A1 to A3).
941	N and U letters represent potentially novel Msg sequences (relative to our prior
942	study (41)) and unclassified sequences, respectively. For sake of clarity only the
943	major clusters were annotated. b, Phylogenetic network of a subset of Msg family
944	A1 ($n = 97$) in primate <i>Pneumocystis</i> including <i>P. jirovecii</i> (red) and <i>P. macacae</i>
945	(dark cyan) suggesting recombination events at the root of the network. Nodes
946	with more than two parents represent reticulate events. Bar represent the number
947	of amino acids substitution per site. c, Phylogenetic network of Msg family A1 (n
948	= 33) in <i>P. oryctolagi</i> (red violet) and <i>P. canis</i> (light blue). d, Phylogenetic
949	network of Msg family A1 ($n = 113$) in rodent <i>Pneumocystis</i> including <i>P. carinii</i>
950	(green), P. murina (dark blue) and P. wakefieldiae (blue violet). The complete
951	phylogenetic network is provided in Supplementary Data.

952

المتسارات

953 Fig. 5. Evolution of Msg cysteine-rich protein domains in *Pneumocystis*. a, Heatmap
954 showing the distribution of Msg domains in each *Pneumocystis* species. The color

- 42 -

955	change from blue- orange-brown indicates an increase in the number of domains.
956	b, Graphical representation of protein similarity between domains, which
957	highlights that the domains were present in the most recent common ancester and
958	were maintained other than perhaps domains M1 and M3. Domains are clustered
959	by a minimum BLASTp cutoff of 70% protein identity. c, Maximum likelihood
960	tree of the M1 domain. In both panels b and c, domains are color-coded by
961	species as shown at the bottom.
962	
963	Fig. 6. Overview of the genomic evolution of the Pneumocystis genus. Gene families
964	are represented by letters: A to E for the five families of major surface
965	glycoproteins (Msg) with the A family being further subdivided into three
966	subfamilies A1, A2, and A3; K and R for kexins and arginine-glycine rich
967	proteins, respectively. Larger fonts indicate expansions as inferred by maximum
968	likelihood phylogenetic trees and networks. Dashed lines represent ancient
969	hybridization between P. carinii and P. wakefieldiae. Detailed analysis also
970	reveals distinct phylogenetic clusters within subfamilies. Introns and CFEM
971	(common in fungal extracellular membrane) domains are enriched in
972	Pneumocystis genes which indicate that these elements were likely present in the
973	most recent common ancestor of Pneumocystis species. Animal icons were
974	obtained from http://phylopic.org.
975	

976 **References**

- 43 -

977	1.	I. Durand-Joly et al., Pneumocystis carinii f. sp. hominis is not infectious for
978		SCID mice. J Clin Microbiol 40, 1862-1865 (2002).
979	2.	F. Gigliotti, A. G. Harmsen, C. G. Haidaris, P. J. Haidaris, Pneumocystis carinii is
980		not universally transmissible between mammalian species. Infect Immun 61,
981		2886-2890 (1993).
982	3.	M. T. Cushion, S. P. Keely, J. R. Stringer, Molecular and phenotypic description
983		of Pneumocystis wakefieldiae sp. nov., a new species in rats. Mycologia 96, 429-
984		438 (2004).
985	4.	S. P. Keely, J. M. Fischer, J. R. Stringer, Evolution and speciation of
986		Pneumocystis. J Eukaryot Microbiol 50 Suppl, 624-626 (2003).
987	5.	O. H. Cisse et al., Comparative Population Genomics Analysis of the Mammalian
988		Fungal Pathogen Pneumocystis. MBio 9, e00381-00318 (2018).
989	6.	N. S. Upham, J. A. Esselstyn, W. Jetz, Inferring the mammal tree: Species-level
990		sets of phylogenies for questions in ecology, evolution, and conservation. PLoS
991		<i>Biol</i> 17 , e3000494 (2019).
992	7.	I. McDougall, F. H. Brown, J. G. Fleagle, Stratigraphic placement and age of
993		modern humans from Kibish, Ethiopia. Nature 433, 733-736 (2005).
994	8.	Y. Suzuki, M. Tomozawa, Y. Koizumi, K. Tsuchiya, H. Suzuki, Estimating the
995		molecular evolutionary rates of mitochondrial genes referring to Quaternary ice
996		age events with inferred population expansions and dispersals in Japanese
997		Apodemus. BMC Evol Biol 15, 187 (2015).
998	9.	J. Guillot et al., Parallel phylogenies of Pneumocystis species and their
999		mammalian hosts. J Eukaryot Microbiol Suppl, 113S-115S (2001).

- 44 -

1000	10.	A. Latinne et al., Genetic diversity and evolution of Pneumocystis fungi infecting
1001		wild Southeast Asian murid rodents. Parasitology 145, 885-900 (2018).
1002	11.	J. Petruzela et al., Evolutionary history of Pneumocystis fungi in their African
1003		rodent hosts. Infect Genet Evol 75, 103934 (2019).
1004	12.	O. H. Cisse, M. Pagni, P. M. Hauser, De novo assembly of the Pneumocystis
1005		jirovecii genome from a single bronchoalveolar lavage fluid specimen from a
1006		patient. MBio 4, e00428-00412 (2012).
1007	13.	L. Ma et al., Genome analysis of three Pneumocystis species reveals adaptation
1008		mechanisms to life exclusively in mammalian hosts. Nat Commun 7, 10740
1009		(2016).
1010	14.	B. E. Slaven et al., Draft assembly and annotation of the Pneumocystis carinii
1011		genome. J Eukaryot Microbiol 53 Suppl 1, S89-91 (2006).
1012	15.	B. Lundgren, R. Cotton, J. D. Lundgren, J. C. Edman, J. A. Kovacs, Identification
1013		of Pneumocystis carinii chromosomes and mapping of five genes. Infect Immun
1014		58 , 1705-1710 (1990).
1015	16.	A. P. Underwood, E. J. Louis, R. H. Borts, J. R. Stringer, A. E. Wakefield,
1016		Pneumocystis carinii telomere repeats are composed of TTAGGG and the
1017		subtelomeric sequence contains a gene encoding the major surface glycoprotein.
1018		Mol Microbiol 19, 273-281 (1996).
1019	17.	L. Ma et al., Sequencing and characterization of the complete mitochondrial
1020		genomes of three Pneumocystis species provide new insights into divergence
1021		between human and rodent Pneumocystis. Faseb J 27, 1962-1972 (2013).

- 45 -

H. Shimodaira, M. Hasegawa, Multiple comparisons of log-likelihoods with

1023		applications to phylogenetic inference. Mol Biol Evol 16, 1114-1116 (1999).
1024	19.	C. M. Aliouat-Denis et al., Pneumocystis species, co-evolution and pathogenic
1025		power. Infect Genet Evol 8, 708-726 (2008).
1026	20.	Y. Kitazoe et al., Robust time estimation reconciles views of the antiquity of
1027		placental mammals. PLoS One 2, e384 (2007).
1028	21.	J. L. S. Xing-Xing Shen, Abigail L. LaBella, Dana A. Opulente, Xiaofan Zhou,
1029		Jacek Kominek, Yuanning Li, Marizeth Groenewald, Chris Todd Hittinger,
1030		Antonis Rokas, Genome-scale phylogeny and contrasting modes of genome
1031		evolution in the fungal phylum Ascomycota. <i>bioRxiv</i> 05 , 088658 (2020).
1032	22.	S. M. Kielbasa, R. Wan, K. Sato, P. Horton, M. C. Frith, Adaptive seeds tame
1033		genomic sequence comparison. Genome Res 21, 487-493 (2011).
1034	23.	T. S. Korneliussen, A. Albrechtsen, R. Nielsen, ANGSD: Analysis of Next
1035		Generation Sequencing Data. BMC Bioinformatics 15, 356 (2014).
1036	24.	A. E. McBride, A. K. Conboy, S. P. Brown, C. Ariyachet, K. L. Rutledge,
1037		Specific sequences within arginine-glycine-rich domains affect mRNA-binding
1038		protein function. Nucleic Acids Res 37, 4322-4330 (2009).
1039	25.	D. A. Russian et al., Characterization of a multicopy family of genes encoding a
1040		surface-expressed serine endoprotease in rat Pneumocystis carinii. Proc Assoc Am
1041		Physicians 111, 347-356 (1999).
1042	26.	G. Bairwa, W. Hee Jung, J. W. Kronstad, Iron acquisition in fungal pathogens of
1043		humans. Metallomics 9, 215-227 (2017).

1022

18.

- 46 -

1044	27.	T. Tanaka, Y. Tateno, T. Gojobori, Evolution of vitamin B6 (pyridoxine)
1045		metabolism by gain and loss of genes. Mol Biol Evol 22, 243-250 (2005).
1046	28.	C. Gournas, M. Prevost, E. M. Krammer, B. Andre, Function and Regulation of
1047		Fungal Amino Acid Transporters: Insights from Predicted Structure. Adv Exp
1048		Med Biol 892, 69-106 (2016).
1049	29.	G. Y. Lipschik, H. Masur, J. A. Kovacs, Polyamine metabolism in Pneumocystis
1050		carinii. J Infect Dis 163, 1121-1127 (1991).
1051	30.	I. Velasco, S. Tenreiro, I. L. Calderon, B. Andre, Saccharomyces cerevisiae Aqr1
1052		is an internal-membrane transporter involved in excretion of amino acids.
1053		Eukaryot Cell 3, 1492-1503 (2004).
1054	31.	J. E. Stajich, F. S. Dietrich, S. W. Roy, Comparative genomic analysis of fungal
1055		genomes reveals intron-rich ancestors. Genome Biol 8, R223 (2007).
1056	32.	O. H. Cisse et al., Genome sequencing of the plant pathogen Taphrina deformans,
1057		the causal agent of peach leaf curl. MBio 4, e00055-00013 (2013).
1058	33.	Y. Yu, L. Nakhleh, A maximum pseudo-likelihood approach for phylogenetic
1059		networks. BMC Genomics 16 Suppl 10, S10 (2015).
1060	34.	E. Mazars et al., Isoenzyme diversity in Pneumocystis carinii from rats, mice, and
1061		rabbits. J Infect Dis 175, 655-660 (1997).
1062	35.	T. Aghova et al., Fossils know it best: Using a new set of fossil calibrations to
1063		improve the temporal phylogenetic framework of murid rodents (Rodentia:
1064		Muridae). Mol Phylogenet Evol 128, 98-111 (2018).
1065	36.	S. B. Araujo et al., Understanding Host-Switching by Ecological Fitting. PLoS
1066		<i>One</i> 10 , e0139225 (2015).

S. Restrepo, J. F. Tabima, M. F. Mideros, N. J. Grunwald, D. R. Matute,

1068		Speciation in fungal and oomycete plant pathogens. Annu Rev Phytopathol 52,
1069		289-316 (2014).
1070	38.	C. R. Icenhour, J. Arnold, M. Medvedovic, M. T. Cushion, Competitive
1071		coexistence of two Pneumocystis species. Infect Genet Evol 6, 177-186 (2006).
1072	39.	J. Zhang, R. Nielsen, Z. Yang, Evaluation of an improved branch-site likelihood
1073		method for detecting positive selection at the molecular level. Mol Biol Evol 22,
1074		2472-2479 (2005).
1075	40.	E. Schmid-Siegert et al., Mechanisms of Surface Antigenic Variation in the
1076		Human Pathogenic Fungus Pneumocystis jirovecii. MBio 8, e01470-01417
1077		(2017).
1078	41.	L. Ma et al., Diversity and Complexity of the Large Surface Protein Family in the
1079		Compacted Genomes of Multiple Pneumocystis Species. <i>mBio</i> 11, (2020).
1080	42.	K. B. R. Morand S., Poulin R., Micromammals and Macroparasites. (2006).
1081	43.	M. T. Cushion et al., Transcriptome of Pneumocystis carinii during fulminate
1082		infection: carbohydrate metabolism and the concept of a compatible parasite.
1083		<i>PLoS One</i> 2 , e423 (2007).
1084	44.	O. H. Cisse, M. Pagni, P. M. Hauser, Comparative Genomics Suggests That the
1085		Human Pathogenic Fungus Pneumocystis jirovecii Acquired Obligate Biotrophy
1086		through Gene Loss. Genome Biology and Evolution 6, 1938-1948 (2014).
1087	45.	A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina
1088		sequence data. <i>Bioinformatics</i> 30 , 2114-2120 (2014).

1067

37.

- 48 -

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.29.227421; this version posted July 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1089	46.	B. Langmead, S. L. Salzberg, Fast gapped-read alignment with Bowtie 2. Nat
1090		Methods 9, 357-359 (2012).

- 1091 47. A. Bankevich *et al.*, SPAdes: a new genome assembly algorithm and its
- applications to single-cell sequencing. *J Comput Biol* **19**, 455-477 (2012).
- 1093 48. F. A. Simao, R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, E. M. Zdobnov,
- 1094BUSCO: assessing genome assembly and annotation completeness with single-
- 1095 copy orthologs. *Bioinformatics* **31**, 3210-3212 (2015).
- 1096 49. O. H. Cisse, J. E. Stajich, FGMP: assessing fungal genome completeness. *BMC*1097 *Bioinformatics* 20, 184 (2019).
- 1098 50. G. Parra, K. Bradnam, I. Korf, CEGMA: a pipeline to accurately annotate core
 1099 genes in eukaryotic genomes. *Bioinformatics* 23, 1061-1067 (2007).
- 1100 51. H. Li, Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*1101 34, 3094-3100 (2018).
- F. J. Sedlazeck *et al.*, Accurate detection of complex structural variations using
 single-molecule sequencing. *Nat Methods* 15, 461-468 (2018).
- S. Koren *et al.*, Canu: scalable and accurate long-read assembly via adaptive kmer weighting and repeat separation. *Genome Res* 27, 722-736 (2017).
- 1106 54. R. Vaser, I. Sovic, N. Nagarajan, M. Sikic, Fast and accurate de novo genome
 1107 assembly from long uncorrected reads. *Genome Res* 27, 737-746 (2017).
- 1108 55. B. J. Walker et al., Pilon: an integrated tool for comprehensive microbial variant
- 1109 detection and genome assembly improvement. *PLoS One* **9**, e112963 (2014).
- 1110 56. H. Li, Aligning sequence reads, clone sequences and assembly contigs with
- 1111 BWA-MEM. *arXiv*, 1303.3997 (2013).

1112	57.	M. Pertea, D. Kim.	G. M. Pertea, J. 7	Г. Leek. S. L.	Salzberg, Transcript-lev	el

- 1113 expression analysis of RNA-Seq experiments with HISAT, StringTie and
- 1114 Ballgown. *Nat Protoc* **11**, 1650-1667 (2016).
- 1115 58. H. Li et al., The Sequence Alignment/Map format and SAMtools. Bioinformatics
- **1116 25**, 2078-2079 (2009).
- 1117 59. M. G. Grabherr *et al.*, Full-length transcriptome assembly from RNA-Seq data
 1118 without a reference genome. *Nat Biotechnol* 29, 644-652 (2011).
- 1119 60. N. L. Bray, H. Pimentel, P. Melsted, L. Pachter, Near-optimal probabilistic RNA-
- 1120 Seq quantification. *Nat Biotechnol* **34**, 525-527 (2016).
- 1121 61. S. AFA, RepeatMasker. (1996-2005).
- W. Bao, K. K. Kojima, O. Kohany, Repbase Update, a database of repetitive
 elements in eukaryotic genomes. *Mob DNA* 6, 11 (2015).
- M. G. Grabherr *et al.*, Genome-wide synteny through highly sensitive sequence
 alignment: Satsuma. *Bioinformatics* 26, 1145-1151 (2010).
- 1126 64. T. UniProt Consortium, UniProt: the universal protein knowledgebase. *Nucleic*1127 *Acids Res* 46, 2699 (2018).
- 1128 65. M. Stanke, S. Waack, Gene prediction with a hidden Markov model and a new
- intron submodel. *Bioinformatics* **19 Suppl 2**, ii215-225 (2003).
- 1130 66. V. Ter-Hovhannisyan, A. Lomsadze, Y. O. Chernoff, M. Borodovsky, Gene
- 1131 prediction in novel fungal genomes using an ab initio algorithm with
- 1132 unsupervised training. *Genome Res* **18**, 1979-1990 (2008).

1133	67.	B. J. Haas et al., Automated eukaryotic gene structure annotation using
1134		EVidenceModeler and the Program to Assemble Spliced Alignments. Genome
1135		<i>Biol</i> 9 , R7 (2008).
1136	68.	I. J. Tsai et al., Comparative genomics of Taphrina fungi causing varying degrees
1137		of tumorous deformity in plants. Genome Biol Evol 6, 861-872 (2014).
1138	69.	C. Holt, M. Yandell, MAKER2: an annotation pipeline and genome-database
1139		management tool for second-generation genome projects. BMC Bioinformatics
1140		12 , 491 (2011).
1141	70.	I. Korf, Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004).
1142	71.	P. M. Hauser et al., Comparative Genomics Suggests that the Fungal Pathogen
1143		Pneumocystis Is an Obligate Parasite Scavenging Amino Acids from Its Host's
1144		Lungs. Plos One 5, (2010).
1145	72.	A. Pierleoni, P. L. Martelli, R. Casadio, PredGPI: a GPI-anchor predictor. BMC
1146		Bioinformatics 9, 392 (2008).
1147	73.	B. Eisenhaber, G. Schneider, M. Wildpaner, F. Eisenhaber, A sensitive predictor
1148		for potential GPI lipid modification sites in fungal protein sequences and its
1149		application to genome-wide studies for Aspergillus nidulans, Candida albicans,
1150		Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. J
1151		<i>Mol Biol</i> 337 , 243-253 (2004).
1152	74.	N. Fankhauser, P. Maser, Identification of GPI anchor attachment signals by a
1153		Kohonen self-organizing map. Bioinformatics 21, 1846-1852 (2005).
1154	75.	J. J. Almagro Armenteros et al., SignalP 5.0 improves signal peptide predictions
1155		using deep neural networks. Nat Biotechnol 37, 420-423 (2019).

- 51 -

1156	76.	K. H. a. W. Stoffel, TMbase - A database of membrane spanning proteins
1157		segments. Biol. Chem. Hoppe-Seyler 374, 166 (1993).
1158	77.	S. El-Gebali et al., The Pfam protein families database in 2019. Nucleic Acids Res
1159		47 , D427-D432 (2019).
1160	78.	H. Fang, dcGOR: an R package for analysing ontologies and protein domain
1161		annotations. PLoS Comput Biol 10, e1003929 (2014).
1162	79.	C. Claudel-Renard, C. Chevalet, T. Faraut, D. Kahn, Enzyme-specific profiles for
1163		genome annotation: PRIAM. Nucleic Acids Res 31, 6633-6639 (2003).
1164	80.	M. Gao, H. Zhou, J. Skolnick, DESTINI: A deep-learning approach to contact-
1165		driven protein structure prediction. Sci Rep 9, 3514 (2019).
1166	81.	M. C. Frith, L. Noe, Improved search heuristics find 20,000 new alignments
1167		between human and mouse genomes. Nucleic Acids Res 42, e59 (2014).
1168	82.	G. Tesler, GRIMM: genome rearrangements web server. Bioinformatics 18, 492-
1169		493 (2002).
1170	83.	A. E. Darling, B. Mau, N. T. Perna, progressiveMauve: multiple genome
1171		alignment with gene gain, loss and rearrangement. PLoS One 5, e11147 (2010).
1172	84.	C. Baudet et al., Cassis: detection of genomic rearrangement breakpoints.
1173		Bioinformatics 26, 1897-1898 (2010).
1174	85.	A. R. Quinlan, BEDTools: The Swiss-Army Tool for Genome Feature Analysis.
1175		Curr Protoc Bioinformatics 47, 11 12 11-34 (2014).
1176	86.	R. A. Farrer, Synima: a Synteny imaging tool for annotated genome assemblies.
1177		BMC Bioinformatics 18, 507 (2017).

- 52 -

1178	87.	P. Rice, I. Longden, A. Bleasby, EMBOSS: the European Molecular Biology
1179		Open Software Suite. Trends Genet 16, 276-277 (2000).
1180	88.	S. F. Altschul et al., Gapped BLAST and PSI-BLAST: a new generation of
1181		protein database search programs. Nucleic Acids Res 25, 3389-3402 (1997).
1182	89.	H. S. Bastian M., Jacomy M, paper presented at the International AAAI
1183		Conference on Weblogs and Social Media, 2009.
1184	90.	S. Seton Bocco, M. Csuros, Splice Sites Seldom Slide: Intron Evolution in
1185		Oomycetes. Genome Biol Evol 8, 2340-2350 (2016).
1186	91.	M. Csuros, Malin: maximum likelihood analysis of intron evolution in
1187		eukaryotes. Bioinformatics 24, 1538-1539 (2008).
1188	92.	D. M. Emms, S. Kelly, OrthoFinder: solving fundamental biases in whole genome
1189		comparisons dramatically improves orthogroup inference accuracy. Genome Biol
1190		16 , 157 (2015).
1191	93.	A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and post-
1192		analysis of large phylogenies. Bioinformatics 30, 1312-1313 (2014).
1193	94.	S. Q. Le, O. Gascuel, An improved general amino acid replacement matrix. Mol
1194		<i>Biol Evol</i> 25 , 1307-1320 (2008).
1195	95.	B. Q. Minh et al., IQ-TREE 2: New Models and Efficient Methods for
1196		Phylogenetic Inference in the Genomic Era. Mol Biol Evol 37, 1530-1534 (2020).
1197	96.	F. Sievers, D. G. Higgins, Clustal Omega, accurate alignment of very large
1198		numbers of sequences. Methods Mol Biol 1079, 105-116 (2014).

- 53 -

	1199	97.	L. T. Nguyen	H. A. Schmid	lt, A	. von Haeseler.	, B. (O. Minh, I	O-TREE: a	a fast and
--	------	-----	--------------	--------------	-------	-----------------	--------	------------	-----------	------------

- 1200 effective stochastic algorithm for estimating maximum-likelihood phylogenies.
- 1201 *Mol Biol Evol* **32**, 268-274 (2015).
- 1202 98. T. M. Sesterhenn et al., Sequence and structure of the linear mitochondrial
- 1203 genome of Pneumocystis carinii. *Mol Genet Genomics* **283**, 63-72 (2010).
- M. Stolzer *et al.*, Inferring duplications, losses, transfers and incomplete lineage
 sorting with nonbinary species trees. *Bioinformatics* 28, i409-i415 (2012).
- 1206 100. M. Csuros, Count: evolutionary analysis of phylogenetic profiles with parsimony
 1207 and likelihood. *Bioinformatics* 26, 1910-1912 (2010).
- 1208 101. D. H. Huson, D. Bryant, Application of phylogenetic networks in evolutionary
 1209 studies. *Mol Biol Evol* 23, 254-267 (2006).
- 1210 102. G. McGuire, F. Wright, TOPAL 2.0: improved detection of mosaic sequences

1211 within multiple alignments. *Bioinformatics* **16**, 130-134 (2000).

- 1212 103. V. Ranwez, E. J. P. Douzery, C. Cambon, N. Chantret, F. Delsuc, MACSE v2:
- 1213 Toolkit for the Alignment of Coding Sequences Accounting for Frameshifts and
- 1214 Stop Codons. *Mol Biol Evol* **35**, 2582-2584 (2018).
- 1215 104. R. Bouckaert *et al.*, BEAST 2: a software platform for Bayesian evolutionary
 1216 analysis. *PLoS Comput Biol* 10, e1003537 (2014).
- 1217 105. A. J. Drummond, S. Y. Ho, M. J. Phillips, A. Rambaut, Relaxed phylogenetics
 1218 and dating with confidence. *PLoS Biol* 4, e88 (2006).
- 1219 106. T. Gernhard, The conditioned reconstructed process. *J Theor Biol* 253, 769-778
 1220 (2008).

1221	107.	J. Heled, A. J. Drummond, Calibrated birth-death phylogenetic time-tree priors
1222		for bayesian inference. Syst Biol 64, 369-383 (2015).
1223	108.	M. Hasegawa, H. Kishino, T. Yano, Dating of the human-ape splitting by a
1224		molecular clock of mitochondrial DNA. J Mol Evol 22, 160-174 (1985).
1225	109.	C. Beimforde et al., Estimating the Phanerozoic history of the Ascomycota
1226		lineages: combining fossil and molecular data. Mol Phylogenet Evol 78, 386-398
1227		(2014).
1228	110.	R. Lanfear, P. B. Frandsen, A. M. Wright, T. Senfeld, B. Calcott, PartitionFinder
1229		2: New Methods for Selecting Partitioned Models of Evolution for Molecular and
1230		Morphological Phylogenetic Analyses. Mol Biol Evol 34, 772-773 (2017).
1231	111.	T. S. Korneliussen, I. Moltke, A. Albrechtsen, R. Nielsen, Calculation of Tajima's
1232		D and other neutrality test statistics from low depth next-generation sequencing
1233		data. BMC Bioinformatics 14, 289 (2013).
1234	112.	M. Fumagalli et al., Quantifying population genetic differentiation from next-
1235		generation sequencing data. Genetics 195, 979-992 (2013).
1236	113.	A. R. Quinlan, I. M. Hall, BEDTools: a flexible suite of utilities for comparing
1237		genomic features. Bioinformatics 26, 841-842 (2010).
1238	114.	R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high
1239		throughput. Nucleic Acids Res 32, 1792-1797 (2004).
1240	115.	T. C. Bruen, H. Philippe, D. Bryant, A simple and robust statistical test for
1241		detecting the presence of recombination. Genetics 172, 2665-2681 (2006).

- 55 -

1242 110. A. WI. KUZIUV, D. Dalliua, I. FIUUII, D. WIUE, A. Stalliatakis, KAXWIL-N	1242	116.	A. M. Kozlov, I	D. Darriba,	T. Flouri.	B. Morel	, A. Stamatakis	, RAxML-NO	β: A
--	------	------	-----------------	-------------	------------	----------	-----------------	------------	------

- 1243 fast, scalable, and user-friendly tool for maximum likelihood phylogenetic
- 1244 inference. *Bioinformatics*, (2019).
- 1245 117. D. H. Huson, C. Scornavacca, Dendroscope 3: an interactive tool for rooted

1246 phylogenetic trees and networks. *Syst Biol* **61**, 1061-1067 (2012).

- 1247 118. Z. Yang, PAML 4: phylogenetic analysis by maximum likelihood. *Mol Biol Evol*1248 24, 1586-1591 (2007).
- 1249 119. J. Koster, S. Rahmann, Snakemake--a scalable bioinformatics workflow engine.
 1250 *Bioinformatics* 28, 2520-2522 (2012).
- 1251 120. R. C. Team, in *R Foundation for Statistical Computing*. (Vienna, Austria, 2018).
- 1252 121. L. G. Bell MA, strap: an R package for plotting phylogenies against stratigraphy
 1253 and assessing their stratigraphic congruence. *Palaeontology* 58, 379–389 (2015).
- 1254 122. G. E. Crooks, G. Hon, J. M. Chandonia, S. E. Brenner, WebLogo: a sequence
- 1255 logo generator. *Genome Res* **14**, 1188-1190 (2004).
- 1256

а	P. IIrovecii	P. Macaca	· ovrolago:	canis	e carinii	P. Murina	p. wakefeldiae	Pfam counts
sg	160	102	15	30	95	47	13	PF02349: Major surface glycoprotein
Σ	83	41	0	2	78	38	4	PF12373: Major surface glycoprotein 2 C terminal
ase	7	7	7	7	11	10	10	PF05193: Peptidase M16 inactive domain
otid	7	7	6	6	11	10	9	PF00675: Peptidase family M16
Pe	3	3	3	3	15	3	4	PF00082: Subtilase family
	1	0	2	2	4	4	4	PF13638: PIN domain
	1	1	2	3	2	3	3	PF07859: alpha/beta hydrolase 3
	2	2	2	2	6	5	3	PF16187: Peptidase_family M16_M
	5	4	5	4	3	3	3	PF00412: LIM domain
	1	1	1	0	0	0	0	PF05343: Peptidase family M42
	1	1	1	0	0	0	0	PF00930: Dipeptidyl peptidase IV
	1	1	1	1	0	0	0	PF16979: SAPK-interactering protein 1
	2	2	2	0	1	1	0	PF00326: Prolyl oligopeptidase family
	0	0	0	0	1	1	1	PF01419: Jacalin-like lectin domain
G Enzymes								1.14.13.9: Metabolic pathways 4.3.3.6: Vitamin B6 3.7.1.3: Metabolic pathways 2.1.1.64: BoSM 2.7.1.36: BoA 5.3.1.8: BoA 2.7.8.11: NC 1.13.11.6: Metabolic pathways 3.5.1.2: Metabolic pathways 6.4.1.1:MM 4.4.1.8:BoSM 2.1.1.77.NC 2.4.1.258:Metabolic pathways 2.8.1.8:Metabolic pathways 2.5.1.6: BoSM 2.5.1.6: BoSM 2.5.1.6: BoSM 4.1.1.23: Metabolic pathways 3.4.14.5: NC 2.4.1.2 BoA 3.4.16.5:NC 2.6.1.42: BoA 1.3.1.94:NC 6.3.1.2: MM
تشارات					www.ma	anaraa.com		2.3.1.51: BoSM 1.14.19.20:BoSM 2.4.1.117: Metabolic pathways 2.3.1.199: BoSM 2.3.1.41: Metabolic pathways 6.3.1.14:NC 3.5.1.88:NC 5.3.1.23: Metabolic pathway

P. jirovecii

P. macacae

P. canis

P. carinii

P. murina

P. wakefieldiae

	N1	M1	M2	M3	M4	M5	C1
P. jirovecii	51	91	83	72	69	64	61
P. macacae	46	125	95	64	88	86	87
P. oryctolagi	9	16	17	9	5	2	9
P. canis	5	29	24	19	11	5	20
P. carinii	84	65	68	56	57	54	51
P. murina	54	22	34	19	28	29	24
P. wakefieldiae	12	5	8	2	3	5	5

